1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
/* pkcs5.c Partial Password-Based Cryptography (PKCS#5) implementation
* Copyright (C) 2002 Free Software Foundation, Inc.
*
* This file is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this file; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*
*/
#include "gcrypt.h"
/*
* 5.2 PBKDF2
*
* PBKDF2 applies a pseudorandom function (see Appendix B.1 for an
* example) to derive keys. The length of the derived key is essentially
* unbounded. (However, the maximum effective search space for the
* derived key may be limited by the structure of the underlying
* pseudorandom function. See Appendix B.1 for further discussion.)
* PBKDF2 is recommended for new applications.
*
* PBKDF2 (P, S, c, dkLen)
*
* Options: PRF underlying pseudorandom function (hLen
* denotes the length in octets of the
* pseudorandom function output)
*
* Input: P password, an octet string
* S salt, an octet string
* c iteration count, a positive integer
* dkLen intended length in octets of the derived
* key, a positive integer, at most
* (2^32 - 1) * hLen
*
* Output: DK derived key, a dkLen-octet string
*/
static gcry_error_t gcry_pbkdf2(int PRF,
const char *P,
size_t Plen,
const char *S,
size_t Slen,
unsigned int c,
unsigned int dkLen,
char *DK)
{
gcry_md_hd_t prf;
gcry_error_t rc;
char *U;
unsigned int u;
unsigned int hLen;
unsigned int l;
unsigned int r;
unsigned char *p;
unsigned int i;
unsigned int k;
hLen = gcry_md_get_algo_dlen(PRF);
if (hLen == 0)
return GPG_ERR_UNSUPPORTED_ALGORITHM;
if (c == 0)
return GPG_ERR_INV_ARG;
if (dkLen == 0)
return GPG_ERR_TOO_SHORT;
/*
*
* Steps:
*
* 1. If dkLen > (2^32 - 1) * hLen, output "derived key too long" and
* stop.
*/
if (dkLen > 4294967295U)
return GPG_ERR_TOO_LARGE;
/*
* 2. Let l be the number of hLen-octet blocks in the derived key,
* rounding up, and let r be the number of octets in the last
* block:
*
* l = CEIL (dkLen / hLen) ,
* r = dkLen - (l - 1) * hLen .
*
* Here, CEIL (x) is the "ceiling" function, i.e. the smallest
* integer greater than, or equal to, x.
*/
l = dkLen / hLen;
if (dkLen % hLen)
l++;
r = dkLen - (l - 1) * hLen;
/*
* 3. For each block of the derived key apply the function F defined
* below to the password P, the salt S, the iteration count c, and
* the block index to compute the block:
*
* T_1 = F (P, S, c, 1) ,
* T_2 = F (P, S, c, 2) ,
* ...
* T_l = F (P, S, c, l) ,
*
* where the function F is defined as the exclusive-or sum of the
* first c iterates of the underlying pseudorandom function PRF
* applied to the password P and the concatenation of the salt S
* and the block index i:
*
* F (P, S, c, i) = U_1 \xor U_2 \xor ... \xor U_c
*
* where
*
* U_1 = PRF (P, S || INT (i)) ,
* U_2 = PRF (P, U_1) ,
* ...
* U_c = PRF (P, U_{c-1}) .
*
* Here, INT (i) is a four-octet encoding of the integer i, most
* significant octet first.
*
* 4. Concatenate the blocks and extract the first dkLen octets to
* produce a derived key DK:
*
* DK = T_1 || T_2 || ... || T_l<0..r-1>
*
* 5. Output the derived key DK.
*
* Note. The construction of the function F follows a "belt-and-
* suspenders" approach. The iterates U_i are computed recursively to
* remove a degree of parallelism from an opponent; they are exclusive-
* ored together to reduce concerns about the recursion degenerating
* into a small set of values.
*
*/
rc = gcry_md_open(&prf, PRF, GCRY_MD_FLAG_HMAC | GCRY_MD_FLAG_SECURE);
if (rc != GPG_ERR_NO_ERROR)
return rc;
U = (char *)gcry_malloc(hLen);
if (!U) {
rc = GPG_ERR_ENOMEM;
goto done;
}
for (i = 1; i <= l; i++) {
memset(DK + (i - 1) * hLen, 0, i == l ? r : hLen);
for (u = 1; u <= c; u++) {
gcry_md_reset(prf);
rc = gcry_md_setkey(prf, P, Plen);
if (rc != GPG_ERR_NO_ERROR) {
goto done;
}
if (u == 1) {
char tmp[4];
gcry_md_write(prf, S, Slen);
tmp[0] = (i & 0xff000000) >> 24;
tmp[1] = (i & 0x00ff0000) >> 16;
tmp[2] = (i & 0x0000ff00) >> 8;
tmp[3] = (i & 0x000000ff) >> 0;
gcry_md_write(prf, tmp, 4);
} else
gcry_md_write(prf, U, hLen);
p = gcry_md_read(prf, PRF);
if (p == nullptr) {
rc = GPG_ERR_CONFIGURATION;
goto done;
}
memcpy(U, p, hLen);
for (k = 0; k < (i == l ? r : hLen); k++)
DK[(i - 1) * hLen + k] ^= U[k];
}
}
rc = GPG_ERR_NO_ERROR;
done:
gcry_md_close(prf);
gcry_free(U);
return rc;
}
|