1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
/******************************************************************
Copyright (C) 1996 by Brian Scearce
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
and/or distribute copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
1. The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
2. Redistribution for profit requires the express, written permission of
the author.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL BRIAN SCEARCE BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
******************************************************************/
/** Fixdark
Routine to repair dark current artifacts in qcam output.
Basic idea: the Qcam CCD suffers from "dark current";
that is, some of the CCD pixels will leak current under
long exposures, even if they're in the dark, and this
shows up as ugly speckling on images taken in low light.
Fortunately, the leaky pixels are the same from shot to
shot. So, we can figure out which pixels are leaky by
taking some establishing shots in the dark, and try to
fix those pixels on subsequent shots. The dark
establishing shots need only be done once per camera.
*/
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "qcam.h"
#define MAX_LOOPS 10
#define FNAME "qcam.darkfile"
static unsigned char master_darkmask1[MAX_HEIGHT][MAX_WIDTH];
static unsigned char master_darkmask2[MAX_HEIGHT/2+1][MAX_WIDTH/2+1];
static unsigned char master_darkmask4[MAX_HEIGHT/4+1][MAX_WIDTH/4+1];
static
int
read_darkmask()
{
int x, y;
int min_bright;
char darkfile[BUFSIZ], *p;
FILE *fp;
strcpy(darkfile, CONFIG_FILE);
if ( (p = strrchr(darkfile, '/'))) {
strcpy(p+1, FNAME);
} else {
strcpy(darkfile, FNAME);
}
if (!(fp = fopen(darkfile, "r"))) {
#ifdef DEBUG
fprintf(stderr, "Can't open darkfile %s\n", darkfile);
#endif
return 0;
}
if (fread(master_darkmask1, sizeof(unsigned char), MAX_WIDTH*MAX_HEIGHT, fp) !=
MAX_WIDTH*MAX_HEIGHT) {
#ifdef DEBUG
fprintf(stderr, "Error reading darkfile\n");
#endif
return 0;
}
for (y = 0; y < MAX_HEIGHT; y += 2) {
for (x = 0; x < MAX_WIDTH; x += 2) {
min_bright = master_darkmask1[y][x];
if (y < MAX_HEIGHT-1 && master_darkmask1[y+1][x] < min_bright)
min_bright = master_darkmask1[y+1][x];
if (x < MAX_WIDTH-1 && master_darkmask1[y][x+1] < min_bright)
min_bright = master_darkmask1[y][x+1];
if (y < MAX_HEIGHT-1 && x < MAX_WIDTH-1 && master_darkmask1[y+1][x+1] < min_bright)
min_bright = master_darkmask1[y+1][x+1];
master_darkmask2[y/2][x/2] = min_bright;
assert(y/2 < MAX_HEIGHT/2+1);
assert(x/2 < MAX_WIDTH/2+1);
}
}
for (y = 0; y < MAX_HEIGHT/2; y += 2) {
for (x = 0; x < MAX_WIDTH/2; x += 2) {
min_bright = master_darkmask2[y][x];
if (y < MAX_HEIGHT/2-1 && master_darkmask2[y+1][x] < min_bright)
min_bright = master_darkmask2[y+1][x];
if (x < MAX_WIDTH/2-1 && master_darkmask2[y][x+1] < min_bright)
min_bright = master_darkmask2[y][x+1];
if (y < MAX_HEIGHT/2-1 && x < MAX_WIDTH-1 && master_darkmask2[y+1][x+1] < min_bright)
min_bright = master_darkmask2[y+1][x+1];
master_darkmask4[y/2][x/2] = min_bright;
assert(y/2 < MAX_HEIGHT/4+1);
assert(x/2 < MAX_WIDTH/4+1);
}
}
fclose(fp);
return 1;
}
/** fixdark
We first record a list of bad leaky pixels, by making a
number of exposures in the dark. master_darkmask holds
this information. It's a map of the CCD.
master_darkmask[y][x] == val means that the pixel is
unreliable for brightnesses of "val" and above.
We go over the image. If a pixel is bad, look at the
adjacent four pixels, average the ones that have good
values, and use that instead.
*/
int
fixdark(const struct qcam *q, scanbuf *scan)
{
static int init = 0;
static int smallest_dm = 255;
unsigned char darkmask[MAX_HEIGHT][MAX_WIDTH];
unsigned char new_image[MAX_HEIGHT][MAX_WIDTH];
int width, height;
int max_width, max_height;
int x, y;
int ccd_x, ccd_y;
int pixelcount, pixeltotal;
int again, loopcount = 0;
int val;
int brightness = q->brightness;
int scale = q->transfer_scale;
if (!init) {
if (!read_darkmask()) return 0;
for (y = 0; y < MAX_HEIGHT; y++)
for (x = 0; x < MAX_HEIGHT; x++)
if (master_darkmask1[y][x] < smallest_dm) {
smallest_dm = master_darkmask1[y][x];
#ifdef DEBUG
fprintf(stderr, "Smallest mask is %d at (%d, %d)\n",
smallest_dm, x, y);
#endif
}
init = 1;
}
if (brightness < smallest_dm) {
#ifdef DEBUG
fprintf(stderr, "Brightness %d (dark current starts at %d), no fixup needed\n",
brightness, smallest_dm);
#endif
return 1;
}
width = q->width / scale;
height = q->height / scale;
max_height = MAX_HEIGHT / scale;
max_width = MAX_WIDTH / scale;
for (y = 0; y < max_height; y++)
for (x = 0; x < max_width; x++)
if (scale == 1) {
darkmask[y][x] = master_darkmask1[y][x];
} else if (scale == 2) {
darkmask[y][x] = master_darkmask2[y][x];
} else if (scale == 4) {
darkmask[y][x] = master_darkmask4[y][x];
} else {
#ifdef DEBUG
fprintf(stderr, "Bad transfer_scale in darkmask assignment!\n");
#endif
return 0;
}
do {
again = 0;
ccd_y = (q->top-1)/scale;
for (y = 0; y < height; y++, ccd_y++) {
ccd_x = q->left-1;
ccd_x /= 2;
ccd_x *= 2;
ccd_x /= scale;
for (x = 0; x < width; x++, ccd_x++) {
val = scan[y*width + x];
if (brightness < darkmask[ccd_y][ccd_x]) { /* good pixel */
new_image[y][x] = val;
} else { /* bad pixel */
/* look at nearby pixels, average the good values */
pixelcount = 0;
pixeltotal = 0;
if (x > 0) { /* left */
if (brightness < darkmask[ccd_y][ccd_x-1]) {
pixelcount++;
pixeltotal += scan[y*width + x - 1];
}
}
if (x < width-1) { /* right */
if (brightness < darkmask[ccd_y][ccd_x+1]) {
pixelcount++;
pixeltotal += scan[y*width + x + 1];
}
}
if (y > 0) { /* above */
if (brightness < darkmask[ccd_y-1][ccd_x]) {
pixelcount++;
pixeltotal += scan[(y-1)*width + x];
}
}
if (y < height-1) { /* below */
if (brightness < darkmask[ccd_y+1][ccd_x]) {
pixelcount++;
pixeltotal += scan[(y+1)*width + x];
}
}
if (pixelcount == 0) { /* no valid neighbors! */
again = 1;
} else {
new_image[y][x] = pixeltotal / pixelcount;
/* mark this pixel as valid, so we don't loop forever */
darkmask[ccd_y][ccd_x] = 255;
}
}
}
}
for (y = 0; y < height; y++)
for (x = 0; x < width; x++)
scan[y*width + x] = new_image[y][x];
} while (loopcount++ < MAX_LOOPS && again);
#ifdef DEBUG
fprintf(stderr, "Darkmask fix took %d loop%s\n",
loopcount, (loopcount == 1)?"":"s");
#endif
return 1;
}
|