1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
import json
import black
import pandas as pd
with open("intel_cpu_database.json", "r") as handle:
intel_raw = json.loads(handle.read())
with open("AMD_data.json", "r") as handle:
amd_raw = json.loads(handle.read())
amd_raw = pd.DataFrame(amd_raw["data"])
### Parse AMD
def parse_amd_clock(name):
name = name.strip().split()
if len(name) == 0:
return None
name = name[-1]
if "mhz" in name.lower():
repl = "mhz"
coef = 1e6
elif "ghz" in name.lower():
repl = "ghz"
coef = 1e9
else:
raise KeyError
return int(coef * float(name.lower().replace(repl, "").strip()))
def parse_amd_launch(d):
if d is None:
return None
if len(d) == 0:
return None
try:
return int(d.split("/")[-1])
except ValueError:
if (d[0] == "Q") or (d[1] == "Q"):
return int(d[2:].strip())
if "September" in d:
return int(d.split()[-1])
print(d)
amd = pd.DataFrame(index=amd_raw.index)
amd["ncores"] = amd_raw["# of CPU Cores"]
amd["nthreads"] = amd_raw["# of Threads"]
amd["model"] = amd_raw["Model"]
amd["family"] = amd_raw["Family"]
amd["base_clock"] = amd_raw["Base Clock"].apply(parse_amd_clock)
amd["boost_clock"] = amd_raw["Max Boost Clock"].apply(parse_amd_clock)
amd["launch_date"] = amd_raw["Launch Date"].apply(parse_amd_launch)
amd["target_use"] = amd_raw["Platform"]
amd["vendor"] = "amd"
amd["microarchitecture"] = None
amd.loc[amd_raw["Supported Technologies"].str.contains("Zen "), "microarchitecture"] = "Zen"
amd.loc[amd_raw["Supported Technologies"].str.contains("Zen\+"), "microarchitecture"] = "Zen+"
amd.loc[amd_raw["Supported Technologies"].str.contains("Zen\+\+"), "microarchitecture"] = "Zen++"
amd["type"] = "cpu"
# amd.loc[amd['model'].str.contains("APU"), "type"] = "apu"
amd["instructions"] = None
# Each of these families have at least this instruction set
amd.loc[amd_raw["Family"].str.contains("Athlon"), "instructions"] = "sse"
amd.loc[amd_raw["Family"].str.contains("Phenom"), "instructions"] = "sse"
amd.loc[amd_raw["Family"].str.contains("FX-Series"), "instructions"] = "sse"
amd.loc[amd_raw["Family"].str.contains("Opteron"), "instructions"] = "sse"
amd.loc[amd_raw["Family"].str.contains("EPYC"), "instructions"] = "avx2"
amd.loc[amd_raw["Family"].str.contains("Ryzen"), "instructions"] = "avx2"
# Climb the ladder
amd.loc[amd_raw["Supported Technologies"].str.contains("SSE"), "instructions"] = "sse"
amd.loc[amd_raw["Supported Technologies"].str.contains("AVX"), "instructions"] = "avx"
amd.loc[amd_raw["Supported Technologies"].str.contains("AVX2"), "instructions"] = "avx2"
amd.loc[amd_raw["Supported Technologies"].str.contains("Zen"), "instructions"] = "avx2"
### Intel Data
intel_rows = []
for row in list(intel_raw.values())[100:]:
# # for k, v in row.items():
# # print(k)
# # print(v)
# # print()
# Not a processor
if "Performance" not in row:
continue
# Some processors are classified as "Mobile", which are almost certainly in laptops not phones
# Excluding atom procs instead, since they're the ones the break the parser
# if row["Essentials"]["Vertical Segment"] == "Mobile":
# continue
if "Intel Atom " in row["name"]:
continue
try:
proc = {
"ncores": int(row["Performance"]["# of Cores"]),
"nthreads": row["Performance"].get("# of Threads", None),
"base_clock": row["Performance"]["Processor Base Frequency"],
"boost_clock": row["Performance"].get("Max Turbo Frequency", None),
"model": row["Essentials"].get("Processor Number", None),
"family": row["Essentials"]["Product Collection"],
"launch_date": row["Essentials"].get("Launch Date"),
"target_use": row["Essentials"]["Vertical Segment"],
"vendor": "intel",
"microarchitecture": row["Essentials"].get("Code Name"),
"instructions": row.get("Advanced Technologies", {}).get("Instruction Set Extensions"),
}
intel_rows.append(proc)
except:
print(row)
raise
def parse_intel_clock(name):
if name is None:
return None
name = name.lower()
if "mhz" in name:
repl = "mhz"
coef = 1e6
elif "ghz" in name:
repl = "ghz"
coef = 1e9
else:
raise KeyError
name = name.replace(repl, "").strip()
return int(coef * float(name))
def parse_instructions(inst):
if inst is None:
return None
for i in ["AVX-512", "AVX2", "AVX", "SSE"]:
if i in inst:
return i
return None
def parse_date(d):
if d is None:
return None
month, year = d.split("'")
return int(year) + 2000
intel = pd.DataFrame(intel_rows)
intel["base_clock"] = intel["base_clock"].apply(parse_intel_clock)
intel["boost_clock"] = intel["boost_clock"].apply(parse_intel_clock)
intel["microarchitecture"] = [x.replace("Products formerly ", "") if x else x for x in intel["microarchitecture"]]
intel["instructions"] = intel["instructions"].apply(parse_instructions)
intel["launch_date"] = intel["launch_date"].apply(parse_date)
intel["type"] = "cpu"
df = pd.concat([amd, intel], sort=True)
df.dropna(how="all", inplace=True)
# Munge instructions
df["instructions"] = df["instructions"].str.lower()
df.loc[df["instructions"] == "avx-512", "instructions"] = "avx512"
df.loc[df["instructions"].isnull(), "instructions"] = "none"
translation = {"none": 0, "sse": 1, "avx": 2, "avx2": 3, "avx512": 4}
df["instructions"] = df["instructions"].apply(lambda x: translation[x])
# add extra data
import extra_cpus
for i in extra_cpus.extra_cpus:
df = df.append(i, ignore_index=True)
def name(vendor, family, model, clock_speed):
if vendor.lower() in family.lower():
vendor = ""
if family in str(model):
family = ""
if family.endswith("Processors") and family[: -len("Processors")] in str(model):
family = ""
return f"{vendor} {family} {model} @ {clock_speed/1_000_000_000:.1f} GHz"
df["name"] = df.apply(lambda row: name(row["vendor"], row["family"], row["model"], row["base_clock"]), axis=1)
for (vendor, model), fix in extra_cpus.fixes.items():
idx = df[(df["vendor"] == vendor) & (df["model"] == model)].index
for k, v in fix.items():
df.loc[idx, k] = v
# Print some data for posterity
print(df[df["vendor"] == "intel"].tail())
print(df[df["vendor"] == "amd"].tail())
print("---")
# Handle nthreads == ncore bugs
mask = (df["nthreads"] == "") | df["nthreads"].isnull()
df.loc[mask, "nthreads"] = df.loc[mask, "ncores"]
mask = (df["nthreads"] != "") & df["nthreads"].notnull()
# print(df[~mask])
cnt = df.shape[0]
df = df[mask]
print(f"Dropped {cnt - df.shape[0]} / {cnt} processors without ncores")
# Strip out bad models
cnt = df.shape[0]
df = df[~(df["model"].isnull() & (df["launch_date"].isnull() | df["launch_date"] < 2008))]
print(f"Dropped {cnt - df.shape[0]} / {cnt} processors without model numers")
df.sort_values(["vendor", "model", "launch_date"], inplace=True)
df.drop_duplicates(subset=["vendor", "model"], keep="last", inplace=True)
output = f'''
"""
Processor data from multiple sources and vendors.
File Authors: QCElemental Authors
"""
'''
def to_python_str(data):
return (
json.dumps(data, indent=2)
.replace("true", "True")
.replace("false", "False")
.replace("NaN", "None")
.replace("null", "None")
)
output += f"data_rows = {to_python_str([tuple(x[1].values) for x in df.iterrows()])}\n"
output += f"data_columns = {to_python_str(list(df.columns))}\n"
output += "data_blob = [{k: v for k, v in zip(data_columns, row)} for row in data_rows]\n"
output = black.format_str(output, mode=black.FileMode())
fn = "cpu_data_blob.py"
with open(fn, "w") as handle:
handle.write(output)
|