1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
|
QCEngine
========
[](https://github.com/MolSSI/QCEngine/actions?query=workflow%3ACI)
[](https://codecov.io/gh/MolSSI/QCEngine)
[](https://molssi.github.io/QCEngine/)
[](https://anaconda.org/conda-forge/qcengine)
[](https://join.slack.com/t/qcarchive/shared_invite/enQtNDIzNTQ2OTExODk0LTE3MWI0YzBjNzVhNzczNDM0ZTA5MmQ1ODcxYTc0YTA1ZDQ2MTk1NDhlMjhjMmQ0YWYwOGMzYzJkZTM2NDlmOGM)

<!--[](https://dev.azure.com/MolSSI/QCArchive/_build/latest?definitionId=5&branchName=master)-->
Quantum chemistry program executor and IO standardizer ([QCSchema](https://github.com/MolSSI/QCSchema)) for quantum chemistry.
# Example
A simple example of QCEngine's capabilities is as follows:
```python
>>> import qcengine as qcng
>>> import qcelemental as qcel
>>> mol = qcel.models.Molecule.from_data("""
O 0.0 0.000 -0.129
H 0.0 -1.494 1.027
H 0.0 1.494 1.027
""")
>>> inp = qcel.models.AtomicInput(
molecule=mol,
driver="energy",
model={"method": "SCF", "basis": "sto-3g"},
keywords={"scf_type": "df"}
)
```
These input specifications can be executed with the ``compute`` function along with a program specifier:
```python
>>> ret = qcng.compute(inp, "psi4")
```
The results contain a complete record of the computation:
```python
>>> ret.return_result
-74.45994963230625
>>> ret.properties.scf_dipole_moment
[0.0, 0.0, 0.6635967188869244]
>>> ret.provenance.cpu
Intel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz
```
See the [documentation](https://molssi.github.io/QCEngine/) for more information.
# License
BSD-3C. See the [License File](LICENSE) for more information.
|