1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
|
__version__ = "2.0.0"
include: "modules/init.snakefile"
include: "modules/sav.snakefile"
include: "modules/fastqc.snakefile"
include: "modules/trimming.snakefile"
include: "modules/mapping.snakefile"
include: "modules/classification.snakefile"
#-------------------< Helper functions >---------------------------------------------------------#
from modules.json_output import write_summary_json, write_summary_json_new, get_fastqc_results, combine_csv, get_plot_type_names
from modules.utils import which
def trimming_input(wildcards):
if not config["notrimming"]:
if geninfo_config["Sample information"]["type"] == "PE":
return expand("{path}/trimmed/{sample}_{read}_fastqc",
path = fastqc_path, read=["R1", "R2"],
sample=geninfo_config["Sample information"]["samples"])
else:
return expand("{path}/trimmed/{sample}_fastqc",
path = fastqc_path, sample=sample_dict.keys())
else:
return None
def get_input(wildcards, if_not, ext, samplelist =[], path = ""):
if path !="":
path += "/"
if not config[if_not]:
if samplelist:
return expand("{path}{sample}{ext}" ,
path = path, ext=ext, sample=samplelist)
return expand("{path}{sample}{ext}",
path = path, ext=ext, sample=wildcards.sample)
else:
return ""
def get_all_fastqc(wildcards, path = fastqc_path + "/raw"):
'''
Generate raw sample names
Note:
I(Rene) believe that this should also return the _fastqc_data.txt
files, because they are required by trimbetter and the summary.
'''
return ["%s/%s_fastqc%s" % (
path,
geninfo_config["Sample information"]["rename"][get_name(x)],
fastqc_stat)
for x in unique_samples[wildcards.sample]
for fastqc_stat in ["","/fastqc_data.txt"]]
def get_trimmomatic_fastqc(wildcards, ext, path = trimming_path):
'''
Generate list of filepaths ending with read identifying string and _fastqc
Returns:
obj::`list` of filenames
Example:
["Path/to/QCResults/FastQC/trimmed/Sample1_S1_L001_R1_fastqc",
"Path/to/QCResults/FastQC/trimmed/Sample1_S1_L001_R2_fastqc"]
'''
if config["notrimming"]:
return []
paired = []
if geninfo_config["Sample information"]["type"]=="PE" and ext =="_fastqc":
paired =["_R1","_R2"]
if wildcards.sample in geninfo_config["Sample information"]["samples"].keys():
if paired:
return expand("{path}/{sample}{paired}{ext}",
sample= wildcards.sample, ext = ext, path = path,
paired = paired)
else:
return expand("{path}/{sample}{ext}" , sample= wildcards.sample,
ext = ext, path = path)
else:
if paired:
return expand("{path}/{sample}{paired}{ext}",
sample=(geninfo_config["Sample information"]
["join_lanes"][wildcards.sample]),
ext = ext, path = path, paired = paired)
else:
return expand("{path}/{sample}{ext}",
sample=(geninfo_config["Sample information"]
["join_lanes"][wildcards.sample]),
ext = ext, path = path)
assert False, "Something went wrong"
def get_trimmomatic_pseudofile(wildcards):
'''
Provides locations for pseudofiles used to force trimmomatic to run
This used to be done with log files, which caused those to disappear in
case of an error.
These files have been used to report to get_trimmomatic_results(),
but as they do not contain any data they produced bad values in report.
'''
if wildcards.sample in geninfo_config["Sample information"]["samples"].keys():
return expand("{path}/{sample}.trimmomatic.log" ,
sample= wildcards.sample, path=log_path)
else:
return expand("{path}/{sample}.trimmomatic.log",
sample=(geninfo_config["Sample information"]
["join_lanes"][wildcards.sample]),
path = log_path)
def get_trimmomatic_params(wildcards):
if wildcards.sample in geninfo_config["Sample information"]["samples"].keys():
return expand("{path}/{sample}.trimmomatic.params",
sample = wildcards.sample, path=trimming_path)
else:
return expand("{path}/{sample}.trimmomatic.params",
sample=(geninfo_config["Sample information"]
["join_lanes"][wildcards.sample]),
path=trimming_path)
def get_batch_files(wildcards):
steps = {"summary_json": data_path + "/summary.json"}
# if pdflatex is not installed on the system, skip pdf output files
if which("pdflatex") is not None:
steps["sample_report"] = expand("{path}/{sample}.pdf",
sample=unique_samples.keys(),
path=main_path)
if config["sav"]:
steps["sav"] = sav_results
if not config["nokraken"]:
steps["kraken_html"] = main_path + "/kraken.html"
steps["kraken_png"] = classification_path + "/kraken_batch.png"
return steps
#--------------------------------------------< RULES >-----------------------------------------------------------------#
rule run_all:
input:
main_path + "/batch_report.html",
lambda wildcards: ((
"%s/%s.sam" % (mapping_path, samp)
for samp in unique_samples.keys()) if config["save_mapping"] else [])
params:
save_mapping = config["save_mapping"]
rule write_final_report:
input:
unpack(get_batch_files)
output:
main_path + "/batch_report.html"
run:
#shell("cp {source} {output}", source = join(geninfo_config["QCumber_path"], "batch_report.html"))
env = Environment(
trim_blocks=True,
variable_start_string='{{~', variable_end_string="~}}")
env.loader = FileSystemLoader(geninfo_config["QCumber_path"])
template = env.get_template("batch_report.html")
summary = json.load(open(str(input.summary_json), "r"))
general_information = json.load(
open( data_path + "/general_information.json", "r"))
if config["sav"]:
sav = json.load(open( str(input.sav), "r"))
sav_json = json.dumps(sav)
else:
sav_json = []
#sav = json.load(open(str(input.general_information), "r"), object_pairs_hook=OrderedDict)
geninfo_config["Commandline"] = cmd_input
html = template.render(
general_information= json.dumps(config),
summary = json.dumps(summary["Results"]),
summary_img = json.dumps(summary["summary_img"]),
sav = sav_json )
html_file = open(str(output), "w")
html_file.write(html)
html_file.close()
# Write PDF report for each sample
def get_steps_per_sample(wildcards):
'''
Get dictionary of steps required to write sample output
sets up filenames required by rule "get_sample_json"
These vary depending on the arguments provided by the user
Affected by:
notrimming | reference | nokraken | nomapping
Returns:
steps (obj::`dict`): dictonary of required steps
key is obj::`str` step
value is obj::`list`(obj::`str`) filenames
'''
steps = {"raw_fastqc" : get_all_fastqc(wildcards)}
if not config["notrimming"]:
steps["trimming"]= get_trimmomatic_pseudofile(wildcards)
steps["trimming_params"] = get_trimmomatic_params(wildcards)
steps["trimming_fastqc"] = get_trimmomatic_fastqc(
wildcards,
"_fastqc", path=fastqc_path + "/trimmed")
if config["reference"] or config["index"]:
steps["mapping"] = get_input(
wildcards, if_not="nomapping",
ext=".bowtie2.log", samplelist=[], path=log_path)
if not config["nokraken"]:
steps["kraken"] = get_input(
wildcards,if_not = "nokraken", ext=".csv", samplelist=[],
path = classification_path ) # "{path}/{wildcards.sample}.kraken.png".format(path = classification_path, wildcards=wildcards)
steps["kraken_log"] = get_input(
wildcards,if_not = "nokraken", ext=".kraken.log",
samplelist=[], path = log_path)
return steps
''' raw_fastqc = get_all_fastqc,
trimming =get_trimmomatic_log,
trimming_params = lambda wildcards: get_trimmomatic_params(wildcards),
trimming_fastqc = lambda wildcards: get_trimmomatic_fastqc(wildcards, "_fastqc", path = fastqc_path + "/trimmed"),
mapping = lambda wildcards: get_input(wildcards,if_not = "nomapping", ext=".bowtie2.log",samplelist=[], path = log_path),
kraken = lambda wildcards: get_input(wildcards,if_not = "nokraken", ext=".csv", samplelist=[], path = classification_path ),
kraken_log = lambda wildcards: get_input(wildcards,if_not = "nokraken", ext=".kraken.log", samplelist=[], path = log_path)
'''
def get_sample_json_output():
output = {
"json": data_path + "/{sample}.json",
"newjson" : data_path + "/{sample}_new.json",
}
for plot_type_name in get_plot_type_names():
output["samplecsv" + plot_type_name] = temp(data_path + "/{sample}_" + plot_type_name + ".csv")
if not config["nokraken"]:
output["kraken_plot"] = classification_path + "/{sample}.kraken.png"
return output
'''
##### Note: Most run time bugs are some how involved with this rule ######
It calls getter functions from submodule snakefiles found in "./modules/"
This rule has lots of side effects
'''
rule write_sample_json:
input:
unpack(get_steps_per_sample)
output:
**get_sample_json_output()
params:
notrimming=config["notrimming"],
nokraken=config["nokraken"],
nomapping=config["nomapping"]
message:
"Write {wildcards.sample}.json"
run:
summary_dict = OrderedDict()
summary_dict["Name"] = wildcards.sample
summary_dict["Files"] = unique_samples[wildcards.sample]
summary_dict["Date"] = datetime.date.today().isoformat()
paired_end = geninfo_config["Sample information"]["type"] == "PE"
fastqc_dict, total_seq ,overrepr_count, adapter_content = (
get_fastqc_results(
parameter,
(x for x in input.raw_fastqc if x[-4:] != ".txt" ),
data_path , "raw", to_base64,
paired_end=paired_end)) #"QCResults/Report/tmp"
summary_dict["Total sequences"] = total_seq
summary_dict["%Overrepr sequences"] = overrepr_count
summary_dict["%Adapter content"] = adapter_content
summary_dict["raw_fastqc_results"] = fastqc_dict
if not params.notrimming:
summary_dict.update(get_trimmomatic_result(
list(input.trimming),
list(input.trimming_params)))
print(input.trimming)
fastqc_dict, total_seq, overrepr_count, adapter_content = (
get_fastqc_results(parameter, input.trimming_fastqc, data_path,"trimmed", to_base64))
if fastqc_dict !=[]:
summary_dict["trimmed_fastqc_results"] = fastqc_dict
summary_dict["%Overrepr sequences (trimmed)"] = overrepr_count
summary_dict["%Adapter content (trimmed)"] = adapter_content
# sort dict order
new_order = ["Name", "Files", "Date", "Total sequences",
"#Remaining Reads","%Remaining Reads",
"%Adapter content","%Adapter content (trimmed)",
"%Overrepr sequences",
"%Overrepr sequences (trimmed)",
"raw_fastqc_results","trimmed_fastqc_results"]
new_order.extend(list(
set(summary_dict.keys()) - set(new_order)))
summary_dict = OrderedDict(
(key, summary_dict[key]) for key in new_order)
if not params.nomapping:
summary_dict.update(get_bowtie2_result(str(input.mapping)))
summary_dict["Reference"] = config["reference"]
if not params.nokraken:
kraken_results = get_kraken_result(
str(input.kraken), str(output.kraken_plot))
if kraken_results:
summary_dict.update(kraken_results)
kraken_log = ""
with open(str(input.kraken_log),"r") as kraken_reader:
for line in kraken_reader.readlines():
if "..." not in line:
kraken_log +=line
summary_dict["kraken_log"] = kraken_log
json.dump(summary_dict, open(str(output.json), "w"))
fastqc_dict, total_seq ,overrepr_perc, adapter_content = (
get_fastqc_results(parameter,
(x for x in input.raw_fastqc if x[-4:] != ".txt" ),
data_path , "raw", to_base64))
res = dict()
res["Sample"] = dict()
res["Sample"]["Name"] = wildcards.sample
res["Sample"]["TS"] = total_seq
res["Sample"]["PAC"] = adapter_content
res["Sample"]["PORS"] = overrepr_perc
res["Sample"]["POST"] = "N/A"
res["Sample"]["PACT"] = "N/A"
res["Sample"]["NRR"] = "N/A"
res["Sample"]["PRR"] = "N/A"
res["Sample"]["NAR"] = "N/A"
res["Sample"]["PAR"] = "N/A"
res["Sample"]["NC"] = "N/A"
res["Sample"]["PC"] = "N/A"
if not config["notrimming"]:
fastqc_dict, total_seq, overrepr_perc, adapter_content = (
get_fastqc_results(parameter, input.trimming_fastqc, data_path,"trimmed", to_base64))
trimmomatic_results = get_trimmomatic_result(list(input.trimming), list(input.trimming_params))
res["Sample"]["POST"] = overrepr_perc
res["Sample"]["PACT"] = adapter_content
res["Sample"]["NRR"] = trimmomatic_results["#Remaining Reads"]
res["Sample"]["PRR"] = trimmomatic_results["%Remaining Reads"]
if not config["nomapping"]:
mapping_result = get_bowtie2_result(str(input.mapping))
res["Sample"]["NAR"] = mapping_result["#AlignedReads"]
res["Sample"]["PAR"] = mapping_result["%AlignedReads"]
if not config["nokraken"]:
kraken_results = get_kraken_result(str(input.kraken), str(output.kraken_plot))
if kraken_results is None:
res["Sample"]["NC"] = "N/A"
res["Sample"]["PC"] = "N/A"
json.dump(res, open(str(output.newjson), "w"))
def get_report_info(wildcards):
steps = {
"sample_json" : "{path}/{sample}.json".format(
sample = wildcards.sample, path = data_path),
"raw_fastqc" : get_all_fastqc(wildcards)}
if not config["notrimming"]:
try:
trimmed_path = fastqc_path + "/trimmed"
# ((fastqc_path + "/trimmed") # not needed and
# missing parentheses
# if not True # config["trimBetter"]
# else (trimbetter_path + "/FastQC"))
except KeyError:
trimmed_path = fastqc_path + "/trimmed"
steps["trimming_fastqc"]= get_trimmomatic_fastqc(
wildcards, "_fastqc", path=trimmed_path)
#if not config["nokraken"]:
# steps["kraken"] = classification_path + "/{sample}.translated".format(sample = wildcards.sample)
return steps
rule write_sample_report:
input:
unpack(get_report_info) #sample_json = data_path + "/{sample}.json"
output:
temp(main_path + "/{sample}.aux"),
pdf=main_path + "/{sample}.pdf",
tex=temp(main_path + "/{sample}.tex")
log:
log_path + "/texreport.log"
message:
"Write {wildcards.sample}.pdf"
run:
env = Environment(trim_blocks = True, variable_start_string='{{~',
variable_end_string = "~}}")
env.loader = FileSystemLoader(geninfo_config["QCumber_path"])
template = env.get_template("report.tex")
sample = json.load(open(str(input.sample_json),"r"),
object_pairs_hook=OrderedDict )
if "Reference" in sample.keys():
sample["Reference"] = basename(sample["Reference"] )
sample["path"] = dirname(sample["Files"][0])
sample["Files"] = [basename(x) for x in sample["Files"]]
# import pprint; pprint.pprint(sample)
pdf_latex = template.render(
#general_information=json.load(open(str(input.general.json),"r")),
general_information=geninfo_config,
sample=sample)
latex = open(str(output.tex), "w")
latex.write(pdf_latex)
latex.close()
#shell( "pdflatex -interaction=nonstopmode -output-directory=$(dirname {output.pdf}) {output.tex} -shell-escape 1>&2> {log}" )
with open(log[0], 'a') as f_log:
with subprocess.Popen(
["pdflatex", "-interaction=nonstopmode",
"-output-directory=%s" % dirname(output.pdf), output.tex],
stdout=f_log, stderr=sys.stdout) as pdflatex_proc:
pdflatex_proc.wait()
# dont knopw how to get rid of this log
# shell("mv {log} {mv_log}", log = str(output.pdf).replace(".pdf",
# ".log"),
# mv_log = str(log).replace("texreport.",
# "." + wildcards.sample + "."))
rule write_kraken_report:
input:
kraken = lambda wildcards: get_input(
wildcards, if_not = "nokraken", ext = ".csv",
samplelist= unique_samples.keys() , path = classification_path)
output:
kraken_html = main_path + "/kraken.html"
shell:
"ktImportText {input.kraken} -o {output.kraken_html}"
def get_files_of_all_steps():
steps = {"raw_fastqc": expand(
"{path}/raw/{sample}_fastqc",
sample=sample_dict.keys(), path=fastqc_path)}
if not config["notrimming"]:
steps["trimming"] = trimming_input
if not config["nomapping"]:
steps["mapping"] = lambda wildcards: get_input(
wildcards, if_not="nomapping", ext=".sam",
samplelist=unique_samples.keys(),path=mapping_path)
if not config["nokraken"]:
steps["kraken_png"] = classification_path + "/kraken_batch.png",
steps["sample_json"] = expand(
"{path}/{sample}.json", sample=unique_samples.keys(), path=data_path)
return steps
def get_batch_output():
''' Creation of dictonary that stores the
output of steps required to finish one batch
summary_json: Path/2/_data/summary.json
fastqc_plots: GC_content | length distribution
| per sequence quality scores
'''
steps = {}
steps["summary_json"] = data_path + "/summary.json"
steps["summary_json_new"] = data_path + "/summary_new.json"
steps["fastqc_plots"] = list(
expand("{path}/{img}.png", path="QCResults/_data",
img=["Per_sequence_GC_content", "Per_sequence_quality_scores",
"Sequence_Length_Distribution"])
)
steps["n_read_plot"] = "QCResults/_data/reads_after_trimming.png"
if not config["nomapping"]:
steps["mapping_plot"] = "QCResults/_data/mapping.png"
steps["insertsize_plot"] = "QCResults/_data/insertsize.png"
return steps
def get_batch_report_input():
steps={}
steps["sample_json"] = expand("{path}/{sample}.json", sample=unique_samples.keys(), path=data_path)
steps["sample_json_new"] = expand("{path}/{sample}_new.json", sample=unique_samples.keys(), path=data_path)
steps["samplecsv"] = expand(data_path + "/{sample}_{plot_type}.csv", sample=unique_samples.keys(), plot_type=get_plot_type_names())
if not config["nokraken"]:
steps["kraken_batch"] = classification_path + "/kraken_batch.png"
if config["reference"] or config["index"]:
steps["insertsize"] = expand("{mapping_path}/{sample}_insertsizes.txt", sample=unique_samples.keys(), mapping_path=mapping_path)
return steps
# Write html report for all samples
rule write_batch_report:
input:
#sample_json = expand("{path}/{sample}.json", sample=unique_samples.keys(), path=data_path)
**get_batch_report_input()
output:
**get_batch_output()
params:
nokraken = config["nokraken"]
run:
combine_csv(input.samplecsv, data_path)
fastqc_csv = expand("{path}/{img}.csv", path="QCResults/_data",
img = ["Per_sequence_GC_content",
"Per_sequence_quality_scores",
"Sequence_Length_Distribution"])
write_summary_json(output, config, input, fastqc_csv, geninfo_config, boxplots, shell, get_name, to_base64)
write_summary_json_new(output, input.sample_json_new)
|