File: pslq_test.cpp

package info (click to toggle)
qd 2.1.200-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 2,932 kB
  • ctags: 1,396
  • sloc: sh: 9,033; cpp: 5,696; f90: 5,156; ansic: 1,359; makefile: 98
file content (296 lines) | stat: -rw-r--r-- 7,934 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
/*
 * tests/pslq_test.cpp
 *
 * This work was supported by the Director, Office of Science, Division
 * of Mathematical, Information, and Computational Sciences of the
 * U.S. Department of Energy under contract number DE-AC03-76SF00098.
 *
 * Copyright (c) 2000-2001
 *
 * A driver for the pslq program which exercises the double-double and 
 * quad-double library.
 */

#include <cmath>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <ctime>
#include <qd/fpu.h>

#include "timer.h"
#include "pslq.h"

using std::cout;
using std::cerr;
using std::endl;

#if !defined(_MSC_VER) || (_MSC_VER > 1200)
using std::sqrt;
using std::strcmp;
using std::exit;
using std::time;
using std::atoi;
using std::rand;
using std::log10;
using std::srand;
#else

#endif

bool flag_random = false;
bool flag_verbose = false;
bool flag_double_pslq = false;
bool flag_dd_pslq = false;
bool flag_qd_pslq = false;

/* Computes the value of the given n-th degree polynomial at point x
   where the (n+1) coefficients of the polynomial is given in a. */
template <class T>
T polyeval(T *a, int n, T x) {
  /* Use Horner's evaluation scheme. */

  T t = a[n];
  for (int i = n-1; i >= 0; i--) {
    t *= x;
    t += a[i];
  }

  return t;
}

/* Computes a root near x0 of the given n-th degree polynomial
   where the (n+1) coefficients of the polynomial is given in a. */
template <class T>
T polyroot(T *a, int n, T x0, double eps) {
  /* Use Newton iteration. */

  T *da = new T[n];
  
  /* Compute the coefficients of the derivatives. */
  for (int i = 1; i <= n; i++)
    da[i-1] = ((double) i) * a[i];
  
  /* Perform Newton iteration. */
  T x = x0;
  T corr;
  static const double und = 2.22507385850721e-308;
  do {
    corr = polyeval<T>(a, n, x) / polyeval<T>(da, n-1, x);
    x -= corr;
  } while (abs(corr) > (eps * abs(x) + und));

  delete [] da;
  return x;
}

/* Creates a random polynomial (integer coefficients) of degree
   n-1, solves for one of its root, and tries to reconstruct the 
   original polynomial from the root by performing PSLQ on 
   1, r, r^2, ..., r^{n-1}.                                       

   Note that this test can report false failures, if the random
   polynomial has a non-trivial factor (with real coefficients).
*/
template <class T>
bool pslq_test(int n, double eps, int seed = 0, int max_itr = 1000) {
  T *x, *a, *b;
  T r, t;
  int err;
  TimeVal tv;
  double tm;
  int ndigits = (int) -log10(eps);

  a = new T[n];
  b = new T[n];
  x = new T[n];

  /* Randomize seed. */
  srand((unsigned int) seed);

  /* Construct a random polynomial, making sure the
     the first and the second coefficients are non-zero.  */
  if (flag_random) {
    a[0] = ((rand() % 2 == 0) ? 1 : -1) * (rand() % 9+1);
    a[n-1] = ((rand() % 2 == 0) ? 1 : -1) * (rand() % 9+1);
    for (int i = 1; i < n-1; i++) {
      a[i] = (T) (rand() % 19 - 9);
    }
  } else {
    for (int i = 0; i < n; i++)
      a[i] = (T) (((7*i+3) % 19) - 9);
  }

  if (flag_verbose) {
    cout.precision(6);
    cout << "Original polynomial:" << endl << "  ";
    for (int i = 0; i < n; i++)
      cout << (double) a[i] << " ";
    cout << endl;
  }

  /* Find a root */
  cout.precision(ndigits);
  r = polyroot<T>(a, n-1, 0.0, eps);
  if (flag_verbose)
    cout << "Root: " << r << endl;

  /* Check the root. */
  t = polyeval<T>(a, n-1, r);
  if (flag_verbose)
    cout << " p(r) = " << t << endl;

  /* Fill in vector x with powers of r. */
  t = 1.0;
  for (int i = 0; i < n; i++, t *= r)
    x[i] = t;
  
  /* Reconstruct polynomial. */
  tic(&tv);
  err = pslq<T>(x, n, b, eps, max_itr);
  tm = toc(&tv);

  if (!err) {
    bool same = true;
    double sign = 0.0;

    if (a[0] == b[0])
      sign = 1.0;
    else if (a[0] == -b[0])
      sign = -1.0;
    else 
      same = false;

    if (flag_verbose) 
      cout << "Reconstructed polynomial:" << endl << "  ";
    cout.precision(8);
    for (int i = 0; i < n; i++) {
      if (a[i] != sign * b[i])
        same = false;
      if (flag_verbose)
        cout << (double) b[i] << " ";
    }
    cout << endl;

    if (!same)
      err = -1;
  }

  delete [] x;
  delete [] a;
  delete [] b;

  if (err)
    cout << "Test FAILED." << endl;
  else
    cout << "Test passed." << endl;
  cout.precision(6);
  cout << "Elapsed time: " << tm << " seconds." << endl;
  return !err;
}

void print_usage() {
  cout << "pslq_test [-h] [-n N] [-d] [-dd] [-qd] [-all] [-verbose]" << endl;
  cout << "  Performs the PSLQ algorithm on 1, r, r^2, ..., r^{n-1}" << endl;
  cout << "  where r is a root of a randomly constructed integer " << endl;
  cout << "  coefficient polynomial of degree n-1.  PSLQ algorithm" << endl;
  cout << "  should reconstruct the polynomial in most cases where" << endl;
  cout << "  the degree is not too high and the polynomial is" << endl;
  cout << "  irreducible over the rationals." << endl;
  cout << endl;
  cout << "  -h -help  Print this usage message and exit." << endl;
  cout << "  -n N      Use n reals in PSLQ algorithm (n-1 degree polynomial)." << endl;
  cout << "            Here n should be even to ensure the polynomial has" << endl;
  cout << "            at least one real root.  This flag will result" << endl;
  cout << "            in random n-1 degree polynomial to be chosen." << endl;
  cout << "  -d        Perform PSLQ with double precision (53 bit mantissa)." << endl;
  cout << "  -dd       Perform PSLQ with double-double precision." << endl;
  cout << "            (about 106 bits of significand)." << endl;
  cout << "  -qd       Perform PSLQ with quad-double precision." << endl;
  cout << "            (about 212 bits of significand).  This is the default." << endl;
  cout << "  -all      Perform PSLQ with all three precisions above." << endl;
  cout << "  -verbose" << endl;
  cout << "  -v        Output PSLQ iteration step information.  Mostly" << endl;
  cout << "            for debugging purposes." << endl;
}

int main(int argc, char **argv) {
  int n = 4;
  char *arg;
  int tmp;
  int seed;

  /* Parse the command-line arguments. */
  for (int i = 1; i < argc; i++) {
    arg = argv[i];
    if (strcmp(arg, "-h") == 0 || strcmp(arg, "-help") == 0) {
      print_usage();
      return 0;
    } else if (strcmp(arg, "-n") == 0) {
      if (++i < argc) {
        tmp = atoi(argv[i]);
        if (tmp <= 1 || tmp > 1024)
          cerr << "Invalid n." << endl;
        else {
          n = tmp;
          flag_random = true;
        }
      } else {
        cerr << "Number expected after `-n'." << endl;
      }
    } else if (strcmp(arg, "-d") == 0) {
      flag_double_pslq = true;
    } else if (strcmp(arg, "-dd") == 0) {
      flag_dd_pslq = true;
    } else if (strcmp(arg, "-qd") == 0) {
      flag_qd_pslq = true;
    } else if (strcmp(arg, "-all") == 0) {
      flag_double_pslq = flag_dd_pslq = flag_qd_pslq = true;
    } else if (strcmp(arg, "-v") == 0 || strcmp(arg, "-verbose") == 0) {
      flag_verbose = true;
    } else {
      cerr << "Unknown flag `" << arg << "'." << endl;
    }
  }

  if (!flag_double_pslq && !flag_dd_pslq && !flag_qd_pslq) {
    flag_dd_pslq = true;
    flag_qd_pslq = true;
  }

  /* Reset seed. */
  seed = (int) time(NULL);

  if (flag_random)
    cout << "Using N = " << n << endl << endl;

  unsigned int old_cw;
  fpu_fix_start(&old_cw);

  bool pass = true;
  if (flag_double_pslq) {
    cout << "Performing double-precision PSLQ." << endl;
    if (!flag_random)
      n = 8;
    pass &= pslq_test<double>(n, 1.0e-15, seed, 1000);
  }

  if (flag_dd_pslq) {
    cout << "Performing double-double precision PSLQ." << endl;
    if (!flag_random)
      n = 14;
    pass &= pslq_test<dd_real>(n, 1.0e-30 , seed, 1000);
  }

  if (flag_qd_pslq) {
    cout << "Performing quad-double precision PSLQ." << endl;
    if (!flag_random)
      n = 26;
    pass &= pslq_test<qd_real>(n, 1.0e-60, seed, 30000);
  }

  fpu_fix_end(&old_cw);
  return (pass ? 0 : 1);
}