1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
// SPDX-License-Identifier: BSD-3-Clause
/* $OpenBSD: sha2.c,v 1.28 2019/07/23 12:35:22 dtucker Exp $ */
/*
* FILE: sha2.c
* AUTHOR: Aaron D. Gifford <me@aarongifford.com>
*
* Copyright (c) 2000-2001, Aaron D. Gifford
* All rights reserved.
*
* $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
*/
#include <sys/types.h>
#include <string.h>
#include "sha2.h"
/*
* UNROLLED TRANSFORM LOOP NOTE:
* You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
* loop version for the hash transform rounds (defined using macros
* later in this file). Either define on the command line, for example:
*
* cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
*
* or define below:
*
* #define SHA2_UNROLL_TRANSFORM
*
*/
#ifndef SHA2_SMALL
#if defined(__amd64__) || defined(__i386__)
#define SHA2_UNROLL_TRANSFORM
#endif
#endif
/*** SHA-224/256/384/512 Machine Architecture Definitions *****************/
/*
* BYTE_ORDER NOTE:
*
* Please make sure that your system defines BYTE_ORDER. If your
* architecture is little-endian, make sure it also defines
* LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
* equivalent.
*
* If your system does not define the above, then you can do so by
* hand like this:
*
* #define LITTLE_ENDIAN 1234
* #define BIG_ENDIAN 4321
*
* And for little-endian machines, add:
*
* #define BYTE_ORDER LITTLE_ENDIAN
*
* Or for big-endian machines:
*
* #define BYTE_ORDER BIG_ENDIAN
*
* The FreeBSD machine this was written on defines BYTE_ORDER
* appropriately by including <sys/types.h> (which in turn includes
* <machine/endian.h> where the appropriate definitions are actually
* made).
*/
#if defined(__MINGW32__) || defined(__MINGW64__)
#include <sys/param.h>
#endif
#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
#endif
/*** SHA-224/256/384/512 Various Length Definitions ***********************/
/* NOTE: Most of these are in sha2.h */
#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
/*** ENDIAN SPECIFIC COPY MACROS **************************************/
#define BE_8_TO_32(dst, cp) do { \
(dst) = (uint32_t)(cp)[3] | ((uint32_t)(cp)[2] << 8) | \
((uint32_t)(cp)[1] << 16) | ((uint32_t)(cp)[0] << 24); \
} while(0)
#define BE_8_TO_64(dst, cp) do { \
(dst) = (uint64_t)(cp)[7] | ((uint64_t)(cp)[6] << 8) | \
((uint64_t)(cp)[5] << 16) | ((uint64_t)(cp)[4] << 24) | \
((uint64_t)(cp)[3] << 32) | ((uint64_t)(cp)[2] << 40) | \
((uint64_t)(cp)[1] << 48) | ((uint64_t)(cp)[0] << 56); \
} while (0)
#define BE_64_TO_8(cp, src) do { \
(cp)[0] = (src) >> 56; \
(cp)[1] = (src) >> 48; \
(cp)[2] = (src) >> 40; \
(cp)[3] = (src) >> 32; \
(cp)[4] = (src) >> 24; \
(cp)[5] = (src) >> 16; \
(cp)[6] = (src) >> 8; \
(cp)[7] = (src); \
} while (0)
#define BE_32_TO_8(cp, src) do { \
(cp)[0] = (src) >> 24; \
(cp)[1] = (src) >> 16; \
(cp)[2] = (src) >> 8; \
(cp)[3] = (src); \
} while (0)
/*
* Macro for incrementally adding the unsigned 64-bit integer n to the
* unsigned 128-bit integer (represented using a two-element array of
* 64-bit words):
*/
#define ADDINC128(w,n) do { \
(w)[0] += (uint64_t)(n); \
if ((w)[0] < (n)) { \
(w)[1]++; \
} \
} while (0)
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
/*
* Bit shifting and rotation (used by the six SHA-XYZ logical functions:
*
* NOTE: The naming of R and S appears backwards here (R is a SHIFT and
* S is a ROTATION) because the SHA-224/256/384/512 description document
* (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
* same "backwards" definition.
*/
/* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */
#define R(b,x) ((x) >> (b))
/* 32-bit Rotate-right (used in SHA-224 and SHA-256): */
#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
/* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
/* Four of six logical functions used in SHA-224 and SHA-256: */
#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
/* Hash constant words K for SHA-224 and SHA-256: */
static const uint32_t K256[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
/* Initial hash value H for SHA-256: */
static const uint32_t sha256_initial_hash_value[8] = {
0x6a09e667UL,
0xbb67ae85UL,
0x3c6ef372UL,
0xa54ff53aUL,
0x510e527fUL,
0x9b05688cUL,
0x1f83d9abUL,
0x5be0cd19UL
};
/*** SHA-256: *********************************************************/
void
SHA256Init(SHA2_CTX *context)
{
memcpy(context->state.st32, sha256_initial_hash_value,
sizeof(sha256_initial_hash_value));
memset(context->buffer, 0, sizeof(context->buffer));
context->bitcount[0] = 0;
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-256 round macros: */
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \
BE_8_TO_32(W256[j], data); \
data += 4; \
T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
(d) += T1; \
(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
j++; \
} while(0)
#define ROUND256(a,b,c,d,e,f,g,h) do { \
s0 = W256[(j+1)&0x0f]; \
s0 = sigma0_256(s0); \
s1 = W256[(j+14)&0x0f]; \
s1 = sigma1_256(s1); \
T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
(d) += T1; \
(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
j++; \
} while(0)
void
SHA256Transform(uint32_t state[8], const uint8_t data[SHA256_BLOCK_LENGTH])
{
uint32_t a, b, c, d, e, f, g, h, s0, s1;
uint32_t T1, W256[16];
int j;
/* Initialize registers with the prev. intermediate value */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
j = 0;
do {
/* Rounds 0 to 15 (unrolled): */
ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
} while (j < 16);
/* Now for the remaining rounds up to 63: */
do {
ROUND256(a,b,c,d,e,f,g,h);
ROUND256(h,a,b,c,d,e,f,g);
ROUND256(g,h,a,b,c,d,e,f);
ROUND256(f,g,h,a,b,c,d,e);
ROUND256(e,f,g,h,a,b,c,d);
ROUND256(d,e,f,g,h,a,b,c);
ROUND256(c,d,e,f,g,h,a,b);
ROUND256(b,c,d,e,f,g,h,a);
} while (j < 64);
/* Compute the current intermediate hash value */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void
SHA256Transform(uint32_t state[8], const uint8_t data[SHA256_BLOCK_LENGTH])
{
uint32_t a, b, c, d, e, f, g, h, s0, s1;
uint32_t T1, T2, W256[16];
int j;
/* Initialize registers with the prev. intermediate value */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
j = 0;
do {
BE_8_TO_32(W256[j], data);
data += 4;
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do {
/* Part of the message block expansion: */
s0 = W256[(j+1)&0x0f];
s0 = sigma0_256(s0);
s1 = W256[(j+14)&0x0f];
s1 = sigma1_256(s1);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 64);
/* Compute the current intermediate hash value */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void
SHA256Update(SHA2_CTX *context, const uint8_t *data, size_t len)
{
uint64_t freespace, usedspace;
/* Calling with no data is valid (we do nothing) */
if (len == 0)
return;
usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
freespace = SHA256_BLOCK_LENGTH - usedspace;
if (len >= freespace) {
/* Fill the buffer completely and process it */
memcpy(&context->buffer[usedspace], data, freespace);
context->bitcount[0] += freespace << 3;
len -= freespace;
data += freespace;
SHA256Transform(context->state.st32, context->buffer);
} else {
/* The buffer is not yet full */
memcpy(&context->buffer[usedspace], data, len);
context->bitcount[0] += (uint64_t)len << 3;
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= SHA256_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
SHA256Transform(context->state.st32, data);
context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
len -= SHA256_BLOCK_LENGTH;
data += SHA256_BLOCK_LENGTH;
}
if (len > 0) {
/* There's left-overs, so save 'em */
memcpy(context->buffer, data, len);
context->bitcount[0] += len << 3;
}
/* Clean up: */
usedspace = freespace = 0;
}
void
SHA256Pad(SHA2_CTX *context)
{
unsigned int usedspace;
usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
if (usedspace > 0) {
/* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
/* Set-up for the last transform: */
memset(&context->buffer[usedspace], 0,
SHA256_SHORT_BLOCK_LENGTH - usedspace);
} else {
if (usedspace < SHA256_BLOCK_LENGTH) {
memset(&context->buffer[usedspace], 0,
SHA256_BLOCK_LENGTH - usedspace);
}
/* Do second-to-last transform: */
SHA256Transform(context->state.st32, context->buffer);
/* Prepare for last transform: */
memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
}
} else {
/* Set-up for the last transform: */
memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
/* Begin padding with a 1 bit: */
*context->buffer = 0x80;
}
/* Store the length of input data (in bits) in big endian format: */
BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
context->bitcount[0]);
/* Final transform: */
SHA256Transform(context->state.st32, context->buffer);
/* Clean up: */
usedspace = 0;
}
void
SHA256Final(uint8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context)
{
SHA2_CTX *volatile const contextv = context;
SHA256Pad(context);
#if BYTE_ORDER == LITTLE_ENDIAN
int i;
/* Convert TO host byte order */
for (i = 0; i < 8; i++)
BE_32_TO_8(digest + i * 4, context->state.st32[i]);
#else
memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
#endif
memset(contextv, 0, sizeof(*contextv));
}
|