1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
#include "gd73_interface.hh"
#include "logger.hh"
#include <QtEndian>
#define BLOCK_SIZE 0x35
GD73Interface::GD73Interface(const USBDeviceDescriptor &descriptor, const ErrorStack &err, QObject *parent)
: C7000Device(descriptor, err, parent), RadioInterface()
{
Packet request, response;
if (nullptr == _dev) {
errMsg(err) << "Cannot initialize GD73 interface: C7000 interface not open.";
return;
}
request = Packet(0x01, 0x04);
if (! sendRecv(request, response, err)) {
errMsg(err) << "Cannot enter programming mode.";
C7000Device::close();
}
logDebug() << "Entered prog mode. Response: " << response.payload().toHex() << ".";
}
bool
GD73Interface::isOpen() const {
return C7000Device::isOpen();
}
RadioInfo
GD73Interface::identifier(const ErrorStack &err) {
Q_UNUSED(err);
return RadioInfo::byID(RadioInfo::GD73);
}
void
GD73Interface::close() {
C7000Device::close();
}
bool
GD73Interface::write_start(uint32_t bank, uint32_t addr, const ErrorStack &err) {
Q_UNUSED(bank); Q_UNUSED(addr); Q_UNUSED(err);
return true;
}
bool
GD73Interface::write(uint32_t bank, uint32_t addr, uint8_t *data, int nbytes, const ErrorStack &err) {
Q_UNUSED(bank);
if ((addr%BLOCK_SIZE) || (nbytes!=BLOCK_SIZE)) {
errMsg(err) << "Address and size must align with block size of 35h";
return false;
}
C7000Device::Packet request, response;
QByteArray payload; payload.resize(2);
*((uint16_t *)payload.data()) = qToLittleEndian((uint16_t)(addr/BLOCK_SIZE));
payload.append((char *)data, nbytes);
request = C7000Device::Packet(0x01, 0x00, 0x0f, payload);
if (! sendRecv(request, response, err)) {
errMsg(err) << "Cannot send write command.";
return false;
}
return true;
}
bool
GD73Interface::write_finish(const ErrorStack &err) {
Q_UNUSED(err);
return true;
}
bool
GD73Interface::read_start(uint32_t bank, uint32_t addr, const ErrorStack &err) {
Q_UNUSED(bank); Q_UNUSED(addr); Q_UNUSED(err);
_lastSequence = 0xffff;
logDebug() << "Start codeplug read, seqnr=" << Qt::hex << _lastSequence << "h.";
return true;
}
bool
GD73Interface::read(uint32_t bank, uint32_t addr, uint8_t *data, int nbytes, const ErrorStack &err) {
Q_UNUSED(bank);
if ((addr%BLOCK_SIZE) || (nbytes!=BLOCK_SIZE)) {
errMsg(err) << "Address and size must align with block size of 35h";
return false;
}
//logDebug() << "Read " << nbytes << "bytes from address " << Qt::hex << addr << "h.";
uint16_t seqNum = addr/BLOCK_SIZE;
if (uint16_t(_lastSequence+1) != seqNum) {
errMsg(err) << "Out-of-sequence read: Expected seqnr. " << uint16_t(_lastSequence+1)
<< " got " << seqNum << ".";
return false;
}
C7000Device::Packet request, response;
if (0xffff == _lastSequence) {
// Request start-of-read
request = C7000Device::Packet(0x01, 0x02);
} else {
QByteArray payload(2,0); *((uint16_t *)payload.data()) = qToLittleEndian(_lastSequence);
request = C7000Device::Packet(0x04, 0x01, 0x0f, payload);
}
if (! sendRecv(request, response, err)) {
errMsg(err) << "Cannot read codeplug from device.";
return false;
}
_lastSequence = qFromLittleEndian(*(uint16_t *)response.payload().data());
memcpy(data, response.payload().data()+2, nbytes);
return true;
}
bool
GD73Interface::read_finish(const ErrorStack &err) {
Q_UNUSED(err);
_lastSequence = 0xffff;
return true;
}
|