1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
|
/*
* QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
*
* Copyright (c) 2004-2007 Fabrice Bellard
* Copyright (c) 2007 Jocelyn Mayer
* Copyright (c) 2010 David Gibson, IBM Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "sysemu.h"
#include "hw.h"
#include "elf.h"
#include "net.h"
#include "blockdev.h"
#include "cpus.h"
#include "kvm.h"
#include "kvm_ppc.h"
#include "hw/boards.h"
#include "hw/ppc.h"
#include "hw/loader.h"
#include "hw/spapr.h"
#include "hw/spapr_vio.h"
#include "hw/spapr_pci.h"
#include "hw/xics.h"
#include "kvm.h"
#include "kvm_ppc.h"
#include "pci.h"
#include "exec-memory.h"
#include <libfdt.h>
/* SLOF memory layout:
*
* SLOF raw image loaded at 0, copies its romfs right below the flat
* device-tree, then position SLOF itself 31M below that
*
* So we set FW_OVERHEAD to 40MB which should account for all of that
* and more
*
* We load our kernel at 4M, leaving space for SLOF initial image
*/
#define FDT_MAX_SIZE 0x10000
#define RTAS_MAX_SIZE 0x10000
#define FW_MAX_SIZE 0x400000
#define FW_FILE_NAME "slof.bin"
#define FW_OVERHEAD 0x2800000
#define KERNEL_LOAD_ADDR FW_MAX_SIZE
#define MIN_RMA_SLOF 128UL
#define TIMEBASE_FREQ 512000000ULL
#define MAX_CPUS 256
#define XICS_IRQS 1024
#define SPAPR_PCI_BUID 0x800000020000001ULL
#define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000)
#define SPAPR_PCI_MEM_WIN_SIZE 0x20000000
#define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000)
#define PHANDLE_XICP 0x00001111
sPAPREnvironment *spapr;
qemu_irq spapr_allocate_irq(uint32_t hint, uint32_t *irq_num,
enum xics_irq_type type)
{
uint32_t irq;
qemu_irq qirq;
if (hint) {
irq = hint;
/* FIXME: we should probably check for collisions somehow */
} else {
irq = spapr->next_irq++;
}
qirq = xics_assign_irq(spapr->icp, irq, type);
if (!qirq) {
return NULL;
}
if (irq_num) {
*irq_num = irq;
}
return qirq;
}
static int spapr_set_associativity(void *fdt, sPAPREnvironment *spapr)
{
int ret = 0, offset;
CPUPPCState *env;
char cpu_model[32];
int smt = kvmppc_smt_threads();
assert(spapr->cpu_model);
for (env = first_cpu; env != NULL; env = env->next_cpu) {
uint32_t associativity[] = {cpu_to_be32(0x5),
cpu_to_be32(0x0),
cpu_to_be32(0x0),
cpu_to_be32(0x0),
cpu_to_be32(env->numa_node),
cpu_to_be32(env->cpu_index)};
if ((env->cpu_index % smt) != 0) {
continue;
}
snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
env->cpu_index);
offset = fdt_path_offset(fdt, cpu_model);
if (offset < 0) {
return offset;
}
ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
sizeof(associativity));
if (ret < 0) {
return ret;
}
}
return ret;
}
static void *spapr_create_fdt_skel(const char *cpu_model,
target_phys_addr_t rma_size,
target_phys_addr_t initrd_base,
target_phys_addr_t initrd_size,
target_phys_addr_t kernel_size,
const char *boot_device,
const char *kernel_cmdline,
long hash_shift)
{
void *fdt;
CPUPPCState *env;
uint64_t mem_reg_property[2];
uint32_t start_prop = cpu_to_be32(initrd_base);
uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
"\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
int i;
char *modelname;
int smt = kvmppc_smt_threads();
unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
cpu_to_be32(0x0), cpu_to_be32(0x0),
cpu_to_be32(0x0)};
char mem_name[32];
target_phys_addr_t node0_size, mem_start;
#define _FDT(exp) \
do { \
int ret = (exp); \
if (ret < 0) { \
fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
#exp, fdt_strerror(ret)); \
exit(1); \
} \
} while (0)
fdt = g_malloc0(FDT_MAX_SIZE);
_FDT((fdt_create(fdt, FDT_MAX_SIZE)));
if (kernel_size) {
_FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
}
if (initrd_size) {
_FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
}
_FDT((fdt_finish_reservemap(fdt)));
/* Root node */
_FDT((fdt_begin_node(fdt, "")));
_FDT((fdt_property_string(fdt, "device_type", "chrp")));
_FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
_FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
_FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
/* /chosen */
_FDT((fdt_begin_node(fdt, "chosen")));
/* Set Form1_affinity */
_FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
_FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
_FDT((fdt_property(fdt, "linux,initrd-start",
&start_prop, sizeof(start_prop))));
_FDT((fdt_property(fdt, "linux,initrd-end",
&end_prop, sizeof(end_prop))));
if (kernel_size) {
uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
cpu_to_be64(kernel_size) };
_FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
}
_FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
_FDT((fdt_end_node(fdt)));
/* memory node(s) */
node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
if (rma_size > node0_size) {
rma_size = node0_size;
}
/* RMA */
mem_reg_property[0] = 0;
mem_reg_property[1] = cpu_to_be64(rma_size);
_FDT((fdt_begin_node(fdt, "memory@0")));
_FDT((fdt_property_string(fdt, "device_type", "memory")));
_FDT((fdt_property(fdt, "reg", mem_reg_property,
sizeof(mem_reg_property))));
_FDT((fdt_property(fdt, "ibm,associativity", associativity,
sizeof(associativity))));
_FDT((fdt_end_node(fdt)));
/* RAM: Node 0 */
if (node0_size > rma_size) {
mem_reg_property[0] = cpu_to_be64(rma_size);
mem_reg_property[1] = cpu_to_be64(node0_size - rma_size);
sprintf(mem_name, "memory@" TARGET_FMT_lx, rma_size);
_FDT((fdt_begin_node(fdt, mem_name)));
_FDT((fdt_property_string(fdt, "device_type", "memory")));
_FDT((fdt_property(fdt, "reg", mem_reg_property,
sizeof(mem_reg_property))));
_FDT((fdt_property(fdt, "ibm,associativity", associativity,
sizeof(associativity))));
_FDT((fdt_end_node(fdt)));
}
/* RAM: Node 1 and beyond */
mem_start = node0_size;
for (i = 1; i < nb_numa_nodes; i++) {
mem_reg_property[0] = cpu_to_be64(mem_start);
mem_reg_property[1] = cpu_to_be64(node_mem[i]);
associativity[3] = associativity[4] = cpu_to_be32(i);
sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
_FDT((fdt_begin_node(fdt, mem_name)));
_FDT((fdt_property_string(fdt, "device_type", "memory")));
_FDT((fdt_property(fdt, "reg", mem_reg_property,
sizeof(mem_reg_property))));
_FDT((fdt_property(fdt, "ibm,associativity", associativity,
sizeof(associativity))));
_FDT((fdt_end_node(fdt)));
mem_start += node_mem[i];
}
/* cpus */
_FDT((fdt_begin_node(fdt, "cpus")));
_FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
_FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
modelname = g_strdup(cpu_model);
for (i = 0; i < strlen(modelname); i++) {
modelname[i] = toupper(modelname[i]);
}
/* This is needed during FDT finalization */
spapr->cpu_model = g_strdup(modelname);
for (env = first_cpu; env != NULL; env = env->next_cpu) {
int index = env->cpu_index;
uint32_t servers_prop[smp_threads];
uint32_t gservers_prop[smp_threads * 2];
char *nodename;
uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
0xffffffff, 0xffffffff};
uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
if ((index % smt) != 0) {
continue;
}
if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
fprintf(stderr, "Allocation failure\n");
exit(1);
}
_FDT((fdt_begin_node(fdt, nodename)));
free(nodename);
_FDT((fdt_property_cell(fdt, "reg", index)));
_FDT((fdt_property_string(fdt, "device_type", "cpu")));
_FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
_FDT((fdt_property_cell(fdt, "dcache-block-size",
env->dcache_line_size)));
_FDT((fdt_property_cell(fdt, "icache-block-size",
env->icache_line_size)));
_FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
_FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
_FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
_FDT((fdt_property(fdt, "ibm,pft-size",
pft_size_prop, sizeof(pft_size_prop))));
_FDT((fdt_property_string(fdt, "status", "okay")));
_FDT((fdt_property(fdt, "64-bit", NULL, 0)));
/* Build interrupt servers and gservers properties */
for (i = 0; i < smp_threads; i++) {
servers_prop[i] = cpu_to_be32(index + i);
/* Hack, direct the group queues back to cpu 0 */
gservers_prop[i*2] = cpu_to_be32(index + i);
gservers_prop[i*2 + 1] = 0;
}
_FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
servers_prop, sizeof(servers_prop))));
_FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
gservers_prop, sizeof(gservers_prop))));
if (env->mmu_model & POWERPC_MMU_1TSEG) {
_FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
segs, sizeof(segs))));
}
/* Advertise VMX/VSX (vector extensions) if available
* 0 / no property == no vector extensions
* 1 == VMX / Altivec available
* 2 == VSX available */
if (env->insns_flags & PPC_ALTIVEC) {
uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
_FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
}
/* Advertise DFP (Decimal Floating Point) if available
* 0 / no property == no DFP
* 1 == DFP available */
if (env->insns_flags2 & PPC2_DFP) {
_FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
}
_FDT((fdt_end_node(fdt)));
}
g_free(modelname);
_FDT((fdt_end_node(fdt)));
/* RTAS */
_FDT((fdt_begin_node(fdt, "rtas")));
_FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
sizeof(hypertas_prop))));
_FDT((fdt_property(fdt, "ibm,associativity-reference-points",
refpoints, sizeof(refpoints))));
_FDT((fdt_end_node(fdt)));
/* interrupt controller */
_FDT((fdt_begin_node(fdt, "interrupt-controller")));
_FDT((fdt_property_string(fdt, "device_type",
"PowerPC-External-Interrupt-Presentation")));
_FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
_FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
_FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
interrupt_server_ranges_prop,
sizeof(interrupt_server_ranges_prop))));
_FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
_FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
_FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
_FDT((fdt_end_node(fdt)));
/* vdevice */
_FDT((fdt_begin_node(fdt, "vdevice")));
_FDT((fdt_property_string(fdt, "device_type", "vdevice")));
_FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
_FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
_FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
_FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
_FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
_FDT((fdt_end_node(fdt)));
_FDT((fdt_end_node(fdt))); /* close root node */
_FDT((fdt_finish(fdt)));
return fdt;
}
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
target_phys_addr_t fdt_addr,
target_phys_addr_t rtas_addr,
target_phys_addr_t rtas_size)
{
int ret;
void *fdt;
sPAPRPHBState *phb;
fdt = g_malloc(FDT_MAX_SIZE);
/* open out the base tree into a temp buffer for the final tweaks */
_FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
if (ret < 0) {
fprintf(stderr, "couldn't setup vio devices in fdt\n");
exit(1);
}
QLIST_FOREACH(phb, &spapr->phbs, list) {
ret = spapr_populate_pci_devices(phb, PHANDLE_XICP, fdt);
}
if (ret < 0) {
fprintf(stderr, "couldn't setup PCI devices in fdt\n");
exit(1);
}
/* RTAS */
ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
if (ret < 0) {
fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
}
/* Advertise NUMA via ibm,associativity */
if (nb_numa_nodes > 1) {
ret = spapr_set_associativity(fdt, spapr);
if (ret < 0) {
fprintf(stderr, "Couldn't set up NUMA device tree properties\n");
}
}
spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
_FDT((fdt_pack(fdt)));
if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
fdt_totalsize(fdt), FDT_MAX_SIZE);
exit(1);
}
cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
g_free(fdt);
}
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}
static void emulate_spapr_hypercall(CPUPPCState *env)
{
env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
}
static void spapr_reset(void *opaque)
{
sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
fprintf(stderr, "sPAPR reset\n");
/* flush out the hash table */
memset(spapr->htab, 0, spapr->htab_size);
/* Load the fdt */
spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
spapr->rtas_size);
/* Set up the entry state */
first_cpu->gpr[3] = spapr->fdt_addr;
first_cpu->gpr[5] = 0;
first_cpu->halted = 0;
first_cpu->nip = spapr->entry_point;
}
static void spapr_cpu_reset(void *opaque)
{
CPUPPCState *env = opaque;
cpu_state_reset(env);
}
/* pSeries LPAR / sPAPR hardware init */
static void ppc_spapr_init(ram_addr_t ram_size,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename,
const char *cpu_model)
{
CPUPPCState *env;
int i;
MemoryRegion *sysmem = get_system_memory();
MemoryRegion *ram = g_new(MemoryRegion, 1);
target_phys_addr_t rma_alloc_size, rma_size;
uint32_t initrd_base = 0;
long kernel_size = 0, initrd_size = 0;
long load_limit, rtas_limit, fw_size;
long pteg_shift = 17;
char *filename;
spapr = g_malloc0(sizeof(*spapr));
QLIST_INIT(&spapr->phbs);
cpu_ppc_hypercall = emulate_spapr_hypercall;
/* Allocate RMA if necessary */
rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
if (rma_alloc_size == -1) {
hw_error("qemu: Unable to create RMA\n");
exit(1);
}
if (rma_alloc_size && (rma_alloc_size < ram_size)) {
rma_size = rma_alloc_size;
} else {
rma_size = ram_size;
}
/* We place the device tree and RTAS just below either the top of the RMA,
* or just below 2GB, whichever is lowere, so that it can be
* processed with 32-bit real mode code if necessary */
rtas_limit = MIN(rma_size, 0x80000000);
spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
load_limit = spapr->fdt_addr - FW_OVERHEAD;
/* init CPUs */
if (cpu_model == NULL) {
cpu_model = kvm_enabled() ? "host" : "POWER7";
}
for (i = 0; i < smp_cpus; i++) {
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "Unable to find PowerPC CPU definition\n");
exit(1);
}
/* Set time-base frequency to 512 MHz */
cpu_ppc_tb_init(env, TIMEBASE_FREQ);
qemu_register_reset(spapr_cpu_reset, env);
env->hreset_vector = 0x60;
env->hreset_excp_prefix = 0;
env->gpr[3] = env->cpu_index;
}
/* allocate RAM */
spapr->ram_limit = ram_size;
if (spapr->ram_limit > rma_alloc_size) {
ram_addr_t nonrma_base = rma_alloc_size;
ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
vmstate_register_ram_global(ram);
memory_region_add_subregion(sysmem, nonrma_base, ram);
}
/* allocate hash page table. For now we always make this 16mb,
* later we should probably make it scale to the size of guest
* RAM */
spapr->htab_size = 1ULL << (pteg_shift + 7);
spapr->htab = qemu_memalign(spapr->htab_size, spapr->htab_size);
for (env = first_cpu; env != NULL; env = env->next_cpu) {
env->external_htab = spapr->htab;
env->htab_base = -1;
env->htab_mask = spapr->htab_size - 1;
/* Tell KVM that we're in PAPR mode */
env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
((pteg_shift + 7) - 18);
env->spr[SPR_HIOR] = 0;
if (kvm_enabled()) {
kvmppc_set_papr(env);
}
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
rtas_limit - spapr->rtas_addr);
if (spapr->rtas_size < 0) {
hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
exit(1);
}
if (spapr->rtas_size > RTAS_MAX_SIZE) {
hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
spapr->rtas_size, RTAS_MAX_SIZE);
exit(1);
}
g_free(filename);
/* Set up Interrupt Controller */
spapr->icp = xics_system_init(XICS_IRQS);
spapr->next_irq = 16;
/* Set up VIO bus */
spapr->vio_bus = spapr_vio_bus_init();
for (i = 0; i < MAX_SERIAL_PORTS; i++) {
if (serial_hds[i]) {
spapr_vty_create(spapr->vio_bus, serial_hds[i]);
}
}
/* Set up PCI */
spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
SPAPR_PCI_MEM_WIN_ADDR,
SPAPR_PCI_MEM_WIN_SIZE,
SPAPR_PCI_IO_WIN_ADDR);
for (i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
if (!nd->model) {
nd->model = g_strdup("ibmveth");
}
if (strcmp(nd->model, "ibmveth") == 0) {
spapr_vlan_create(spapr->vio_bus, nd);
} else {
pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
}
}
for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
spapr_vscsi_create(spapr->vio_bus);
}
if (rma_size < (MIN_RMA_SLOF << 20)) {
fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
"%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
exit(1);
}
fprintf(stderr, "sPAPR memory map:\n");
fprintf(stderr, "RTAS : 0x%08lx..%08lx\n",
(unsigned long)spapr->rtas_addr,
(unsigned long)(spapr->rtas_addr + spapr->rtas_size - 1));
fprintf(stderr, "FDT : 0x%08lx..%08lx\n",
(unsigned long)spapr->fdt_addr,
(unsigned long)(spapr->fdt_addr + FDT_MAX_SIZE - 1));
if (kernel_filename) {
uint64_t lowaddr = 0;
kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
if (kernel_size < 0) {
kernel_size = load_image_targphys(kernel_filename,
KERNEL_LOAD_ADDR,
load_limit - KERNEL_LOAD_ADDR);
}
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
fprintf(stderr, "Kernel : 0x%08x..%08lx\n",
KERNEL_LOAD_ADDR, KERNEL_LOAD_ADDR + kernel_size - 1);
/* load initrd */
if (initrd_filename) {
/* Try to locate the initrd in the gap between the kernel
* and the firmware. Add a bit of space just in case
*/
initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
initrd_size = load_image_targphys(initrd_filename, initrd_base,
load_limit - initrd_base);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
fprintf(stderr, "Ramdisk : 0x%08lx..%08lx\n",
(long)initrd_base, (long)(initrd_base + initrd_size - 1));
} else {
initrd_base = 0;
initrd_size = 0;
}
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
if (fw_size < 0) {
hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
exit(1);
}
g_free(filename);
fprintf(stderr, "Firmware load : 0x%08x..%08lx\n",
0, fw_size);
fprintf(stderr, "Firmware runtime : 0x%08lx..%08lx\n",
load_limit, (unsigned long)spapr->fdt_addr);
spapr->entry_point = 0x100;
/* SLOF will startup the secondary CPUs using RTAS */
for (env = first_cpu; env != NULL; env = env->next_cpu) {
env->halted = 1;
}
/* Prepare the device tree */
spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, rma_size,
initrd_base, initrd_size,
kernel_size,
boot_device, kernel_cmdline,
pteg_shift + 7);
assert(spapr->fdt_skel != NULL);
qemu_register_reset(spapr_reset, spapr);
}
static QEMUMachine spapr_machine = {
.name = "pseries",
.desc = "pSeries Logical Partition (PAPR compliant)",
.init = ppc_spapr_init,
.max_cpus = MAX_CPUS,
.no_parallel = 1,
.use_scsi = 1,
};
static void spapr_machine_init(void)
{
qemu_register_machine(&spapr_machine);
}
machine_init(spapr_machine_init);
|