1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
Recommendations for KVM CPU model configuration on x86 hosts
============================================================
The information that follows provides recommendations for configuring
CPU models on x86 hosts. The goals are to maximise performance, while
protecting guest OS against various CPU hardware flaws, and optionally
enabling live migration between hosts with heterogeneous CPU models.
Two ways to configure CPU models with QEMU / KVM
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(1) **Host passthrough**
This passes the host CPU model features, model, stepping, exactly to
the guest. Note that KVM may filter out some host CPU model features
if they cannot be supported with virtualization. Live migration is
unsafe when this mode is used as libvirt / QEMU cannot guarantee a
stable CPU is exposed to the guest across hosts. This is the
recommended CPU to use, provided live migration is not required.
(2) **Named model**
QEMU comes with a number of predefined named CPU models, that
typically refer to specific generations of hardware released by
Intel and AMD. These allow the guest VMs to have a degree of
isolation from the host CPU, allowing greater flexibility in live
migrating between hosts with differing hardware. @end table
In both cases, it is possible to optionally add or remove individual CPU
features, to alter what is presented to the guest by default.
Libvirt supports a third way to configure CPU models known as "Host
model". This uses the QEMU "Named model" feature, automatically picking
a CPU model that is similar the host CPU, and then adding extra features
to approximate the host model as closely as possible. This does not
guarantee the CPU family, stepping, etc will precisely match the host
CPU, as they would with "Host passthrough", but gives much of the
benefit of passthrough, while making live migration safe.
ABI compatibility levels for CPU models
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The x86_64 architecture has a number of `ABI compatibility levels`_
defined. Traditionally most operating systems and toolchains would
only target the original baseline ABI. It is expected that in
future OS and toolchains are likely to target newer ABIs. The
table that follows illustrates which ABI compatibility levels
can be satisfied by the QEMU CPU models. Note that the table only
lists the long term stable CPU model versions (eg Haswell-v4).
In addition to what is listed, there are also many CPU model
aliases which resolve to a different CPU model version,
depending on the machine type is in use.
.. _ABI compatibility levels: https://gitlab.com/x86-psABIs/x86-64-ABI/
.. csv-table:: x86-64 ABI compatibility levels
:file: cpu-models-x86-abi.csv
:widths: 40,15,15,15,15
:header-rows: 1
Preferred CPU models for Intel x86 hosts
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following CPU models are preferred for use on Intel hosts.
Administrators / applications are recommended to use the CPU model that
matches the generation of the host CPUs in use. In a deployment with a
mixture of host CPU models between machines, if live migration
compatibility is required, use the newest CPU model that is compatible
across all desired hosts.
``ClearwaterForest``
Intel Xeon Processor (ClearwaterForest, 2025)
``SierraForest``, ``SierraForest-v2``
Intel Xeon Processor (SierraForest, 2024), SierraForest-v2 mitigates
the GDS and RFDS vulnerabilities with stepping 3.
``GraniteRapids``, ``GraniteRapids-v2``
Intel Xeon Processor (GraniteRapids, 2024)
``Cascadelake-Server``, ``Cascadelake-Server-noTSX``
Intel Xeon Processor (Cascade Lake, 2019), with "stepping" levels 6
or 7 only. (The Cascade Lake Xeon processor with *stepping 5 is
vulnerable to MDS variants*.)
``Skylake-Server``, ``Skylake-Server-IBRS``, ``Skylake-Server-IBRS-noTSX``
Intel Xeon Processor (Skylake, 2016)
``Skylake-Client``, ``Skylake-Client-IBRS``, ``Skylake-Client-noTSX-IBRS}``
Intel Core Processor (Skylake, 2015)
``Broadwell``, ``Broadwell-IBRS``, ``Broadwell-noTSX``, ``Broadwell-noTSX-IBRS``
Intel Core Processor (Broadwell, 2014)
``Haswell``, ``Haswell-IBRS``, ``Haswell-noTSX``, ``Haswell-noTSX-IBRS``
Intel Core Processor (Haswell, 2013)
``IvyBridge``, ``IvyBridge-IBR``
Intel Xeon E3-12xx v2 (Ivy Bridge, 2012)
``SandyBridge``, ``SandyBridge-IBRS``
Intel Xeon E312xx (Sandy Bridge, 2011)
``Westmere``, ``Westmere-IBRS``
Westmere E56xx/L56xx/X56xx (Nehalem-C, 2010)
``Nehalem``, ``Nehalem-IBRS``
Intel Core i7 9xx (Nehalem Class Core i7, 2008)
``Penryn``
Intel Core 2 Duo P9xxx (Penryn Class Core 2, 2007)
``Conroe``
Intel Celeron_4x0 (Conroe/Merom Class Core 2, 2006)
Important CPU features for Intel x86 hosts
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following are important CPU features that should be used on Intel
x86 hosts, when available in the host CPU. Some of them require explicit
configuration to enable, as they are not included by default in some, or
all, of the named CPU models listed above. In general all of these
features are included if using "Host passthrough" or "Host model".
``pcid``
Recommended to mitigate the cost of the Meltdown (CVE-2017-5754) fix.
Included by default in Haswell, Broadwell & Skylake Intel CPU models.
Should be explicitly turned on for Westmere, SandyBridge, and
IvyBridge Intel CPU models. Note that some desktop/mobile Westmere
CPUs cannot support this feature.
``spec-ctrl``
Required to enable the Spectre v2 (CVE-2017-5715) fix.
Included by default in Intel CPU models with -IBRS suffix.
Must be explicitly turned on for Intel CPU models without -IBRS
suffix.
Requires the host CPU microcode to support this feature before it
can be used for guest CPUs.
``stibp``
Required to enable stronger Spectre v2 (CVE-2017-5715) fixes in some
operating systems.
Must be explicitly turned on for all Intel CPU models.
Requires the host CPU microcode to support this feature before it can
be used for guest CPUs.
``ssbd``
Required to enable the CVE-2018-3639 fix.
Not included by default in any Intel CPU model.
Must be explicitly turned on for all Intel CPU models.
Requires the host CPU microcode to support this feature before it
can be used for guest CPUs.
``pdpe1gb``
Recommended to allow guest OS to use 1GB size pages.
Not included by default in any Intel CPU model.
Should be explicitly turned on for all Intel CPU models.
Note that not all CPU hardware will support this feature.
``md-clear``
Required to confirm the MDS (CVE-2018-12126, CVE-2018-12127,
CVE-2018-12130, CVE-2019-11091) fixes.
Not included by default in any Intel CPU model.
Must be explicitly turned on for all Intel CPU models.
Requires the host CPU microcode to support this feature before it
can be used for guest CPUs.
``mds-no``
Recommended to inform the guest OS that the host is *not* vulnerable
to any of the MDS variants ([MFBDS] CVE-2018-12130, [MLPDS]
CVE-2018-12127, [MSBDS] CVE-2018-12126).
This is an MSR (Model-Specific Register) feature rather than a CPUID feature,
therefore it will not appear in the Linux ``/proc/cpuinfo`` in the host or
guest. Instead, the host kernel uses it to populate the MDS
vulnerability file in ``sysfs``.
So it should only be enabled for VMs if the host reports @code{Not
affected} in the ``/sys/devices/system/cpu/vulnerabilities/mds`` file.
``taa-no``
Recommended to inform the guest that the host is ``not``
vulnerable to CVE-2019-11135, TSX Asynchronous Abort (TAA).
This is also an MSR feature, therefore it does not show up in the Linux
``/proc/cpuinfo`` in the host or guest.
It should only be enabled for VMs if the host reports ``Not affected``
in the ``/sys/devices/system/cpu/vulnerabilities/tsx_async_abort``
file.
``tsx-ctrl``
Recommended to inform the guest that it can disable the Intel TSX
(Transactional Synchronization Extensions) feature; or, if the
processor is vulnerable, use the Intel VERW instruction (a
processor-level instruction that performs checks on memory access) as
a mitigation for the TAA vulnerability. (For details, refer to
Intel's `deep dive into MDS
<https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling>`_.)
Expose this to the guest OS if and only if: (a) the host has TSX
enabled; *and* (b) the guest has ``rtm`` CPU flag enabled.
By disabling TSX, KVM-based guests can avoid paying the price of
mitigating TSX-based attacks.
Note that ``tsx-ctrl`` is also an MSR feature, therefore it does not show
up in the Linux ``/proc/cpuinfo`` in the host or guest.
To validate that Intel TSX is indeed disabled for the guest, there are
two ways: (a) check for the *absence* of ``rtm`` in the guest's
``/proc/cpuinfo``; or (b) the
``/sys/devices/system/cpu/vulnerabilities/tsx_async_abort`` file in
the guest should report ``Mitigation: TSX disabled``.
``bhi-no``
Recommended to inform the guest that the host is ``not``
vulnerable to CVE-2022-0001, Branch History Injection (BHI).
This is also an MSR feature, therefore it does not show up in the Linux
``/proc/cpuinfo`` in the host or guest.
It should only be enabled for VMs if the host reports
``BHI: Not affected`` in the
``/sys/devices/system/cpu/vulnerabilities/spectre_v2`` file.
``gds-no``
Recommended to inform the guest that the host is ``not``
vulnerable to CVE-2022-40982, Gather Data Sampling (GDS).
This is also an MSR feature, therefore it does not show up in the Linux
``/proc/cpuinfo`` in the host or guest.
It should only be enabled for VMs if the host reports ``Not affected``
in the ``/sys/devices/system/cpu/vulnerabilities/gather_data_sampling``
file.
``rfds-no``
Recommended to inform the guest that the host is ``not``
vulnerable to CVE-2023-28746, Register File Data Sampling (RFDS).
This is also an MSR feature, therefore it does not show up in the Linux
``/proc/cpuinfo`` in the host or guest.
It should only be enabled for VMs if the host reports ``Not affected``
in the ``/sys/devices/system/cpu/vulnerabilities/reg_file_data_sampling``
file.
Preferred CPU models for AMD x86 hosts
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following CPU models are preferred for use on AMD hosts.
Administrators / applications are recommended to use the CPU model that
matches the generation of the host CPUs in use. In a deployment with a
mixture of host CPU models between machines, if live migration
compatibility is required, use the newest CPU model that is compatible
across all desired hosts.
``EPYC``, ``EPYC-IBPB``
AMD EPYC Processor (2017)
``Opteron_G5``
AMD Opteron 63xx class CPU (2012)
``Opteron_G4``
AMD Opteron 62xx class CPU (2011)
``Opteron_G3``
AMD Opteron 23xx (Gen 3 Class Opteron, 2009)
``Opteron_G2``
AMD Opteron 22xx (Gen 2 Class Opteron, 2006)
``Opteron_G1``
AMD Opteron 240 (Gen 1 Class Opteron, 2004)
Important CPU features for AMD x86 hosts
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following are important CPU features that should be used on AMD x86
hosts, when available in the host CPU. Some of them require explicit
configuration to enable, as they are not included by default in some, or
all, of the named CPU models listed above. In general all of these
features are included if using "Host passthrough" or "Host model".
``ibpb``
Required to enable the Spectre v2 (CVE-2017-5715) fix.
Included by default in AMD CPU models with -IBPB suffix.
Must be explicitly turned on for AMD CPU models without -IBPB suffix.
Requires the host CPU microcode to support this feature before it
can be used for guest CPUs.
``stibp``
Required to enable stronger Spectre v2 (CVE-2017-5715) fixes in some
operating systems.
Must be explicitly turned on for all AMD CPU models.
Requires the host CPU microcode to support this feature before it
can be used for guest CPUs.
``virt-ssbd``
Required to enable the CVE-2018-3639 fix
Not included by default in any AMD CPU model.
Must be explicitly turned on for all AMD CPU models.
This should be provided to guests, even if amd-ssbd is also provided,
for maximum guest compatibility.
Note for some QEMU / libvirt versions, this must be force enabled when
when using "Host model", because this is a virtual feature that
doesn't exist in the physical host CPUs.
``amd-ssbd``
Required to enable the CVE-2018-3639 fix
Not included by default in any AMD CPU model.
Must be explicitly turned on for all AMD CPU models.
This provides higher performance than ``virt-ssbd`` so should be
exposed to guests whenever available in the host. ``virt-ssbd`` should
none the less also be exposed for maximum guest compatibility as some
kernels only know about ``virt-ssbd``.
``amd-no-ssb``
Recommended to indicate the host is not vulnerable CVE-2018-3639
Not included by default in any AMD CPU model.
Future hardware generations of CPU will not be vulnerable to
CVE-2018-3639, and thus the guest should be told not to enable
its mitigations, by exposing amd-no-ssb. This is mutually
exclusive with virt-ssbd and amd-ssbd.
``pdpe1gb``
Recommended to allow guest OS to use 1GB size pages
Not included by default in any AMD CPU model.
Should be explicitly turned on for all AMD CPU models.
Note that not all CPU hardware will support this feature.
Default x86 CPU models
^^^^^^^^^^^^^^^^^^^^^^
The default QEMU CPU models are designed such that they can run on all
hosts. If an application does not wish to do perform any host
compatibility checks before launching guests, the default is guaranteed
to work.
The default CPU models will, however, leave the guest OS vulnerable to
various CPU hardware flaws, so their use is strongly discouraged.
Applications should follow the earlier guidance to setup a better CPU
configuration, with host passthrough recommended if live migration is
not needed.
``qemu32``, ``qemu64``
QEMU Virtual CPU version 2.5+ (32 & 64 bit variants)
``qemu64`` is used for x86_64 guests and ``qemu32`` is used for i686
guests, when no ``-cpu`` argument is given to QEMU, or no ``<cpu>`` is
provided in libvirt XML.
Other non-recommended x86 CPUs
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following CPUs models are compatible with most AMD and Intel x86
hosts, but their usage is discouraged, as they expose a very limited
featureset, which prevents guests having optimal performance.
``kvm32``, ``kvm64``
Common KVM processor (32 & 64 bit variants).
Legacy models just for historical compatibility with ancient QEMU
versions.
``486``, ``athlon``, ``phenom``, ``coreduo``, ``core2duo``, ``n270``, ``pentium``, ``pentium2``, ``pentium3``
Various very old x86 CPU models, mostly predating the introduction
of hardware assisted virtualization, that should thus not be
required for running virtual machines.
Syntax for configuring CPU models
=================================
The examples below illustrate the approach to configuring the various
CPU models / features in QEMU and libvirt.
QEMU command line
^^^^^^^^^^^^^^^^^
Host passthrough:
.. parsed-literal::
|qemu_system| -cpu host
Host passthrough with feature customization:
.. parsed-literal::
|qemu_system| -cpu host,vmx=off,...
Named CPU models:
.. parsed-literal::
|qemu_system| -cpu Westmere
Named CPU models with feature customization:
.. parsed-literal::
|qemu_system| -cpu Westmere,pcid=on,...
Libvirt guest XML
^^^^^^^^^^^^^^^^^
Host passthrough::
<cpu mode='host-passthrough'/>
Host passthrough with feature customization::
<cpu mode='host-passthrough'>
<feature name="vmx" policy="disable"/>
...
</cpu>
Host model::
<cpu mode='host-model'/>
Host model with feature customization::
<cpu mode='host-model'>
<feature name="vmx" policy="disable"/>
...
</cpu>
Named model::
<cpu mode='custom'>
<model name="Westmere"/>
</cpu>
Named model with feature customization::
<cpu mode='custom'>
<model name="Westmere"/>
<feature name="pcid" policy="require"/>
...
</cpu>
|