1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
/*
* QEMU ACPI hotplug utilities
*
* Copyright (C) 2013 Red Hat Inc
*
* Authors:
* Igor Mammedov <imammedo@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "hw/acpi/cpu_hotplug.h"
#include "qapi/error.h"
#include "hw/core/cpu.h"
#include "hw/i386/x86.h"
#include "hw/pci/pci_device.h"
#include "qemu/error-report.h"
#define CPU_EJECT_METHOD "CPEJ"
#define CPU_MAT_METHOD "CPMA"
#define CPU_ON_BITMAP "CPON"
#define CPU_STATUS_METHOD "CPST"
#define CPU_STATUS_MAP "PRS"
#define CPU_SCAN_METHOD "PRSC"
static uint64_t cpu_status_read(void *opaque, hwaddr addr, unsigned int size)
{
AcpiCpuHotplug *cpus = opaque;
uint64_t val = cpus->sts[addr];
return val;
}
static void cpu_status_write(void *opaque, hwaddr addr, uint64_t data,
unsigned int size)
{
/* firmware never used to write in CPU present bitmap so use
this fact as means to switch QEMU into modern CPU hotplug
mode by writing 0 at the beginning of legacy CPU bitmap
*/
if (addr == 0 && data == 0) {
AcpiCpuHotplug *cpus = opaque;
object_property_set_bool(cpus->device, "cpu-hotplug-legacy", false,
&error_abort);
}
}
static const MemoryRegionOps AcpiCpuHotplug_ops = {
.read = cpu_status_read,
.write = cpu_status_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 4,
},
.impl = {
.max_access_size = 1,
},
};
static void acpi_set_cpu_present_bit(AcpiCpuHotplug *g, CPUState *cpu,
bool *swtchd_to_modern)
{
int64_t cpu_id;
cpu_id = cpu->cc->get_arch_id(cpu);
if ((cpu_id / 8) >= ACPI_GPE_PROC_LEN) {
object_property_set_bool(g->device, "cpu-hotplug-legacy", false,
&error_abort);
*swtchd_to_modern = true;
return;
}
*swtchd_to_modern = false;
g->sts[cpu_id / 8] |= (1 << (cpu_id % 8));
}
void legacy_acpi_cpu_plug_cb(HotplugHandler *hotplug_dev,
AcpiCpuHotplug *g, DeviceState *dev, Error **errp)
{
bool swtchd_to_modern;
Error *local_err = NULL;
acpi_set_cpu_present_bit(g, CPU(dev), &swtchd_to_modern);
if (swtchd_to_modern) {
/* propagate the hotplug to the modern interface */
hotplug_handler_plug(hotplug_dev, dev, &local_err);
} else {
acpi_send_event(DEVICE(hotplug_dev), ACPI_CPU_HOTPLUG_STATUS);
}
}
void legacy_acpi_cpu_hotplug_init(MemoryRegion *parent, Object *owner,
AcpiCpuHotplug *gpe_cpu, uint16_t base)
{
CPUState *cpu;
bool swtchd_to_modern;
memory_region_init_io(&gpe_cpu->io, owner, &AcpiCpuHotplug_ops,
gpe_cpu, "acpi-cpu-hotplug", ACPI_GPE_PROC_LEN);
memory_region_add_subregion(parent, base, &gpe_cpu->io);
gpe_cpu->device = owner;
CPU_FOREACH(cpu) {
acpi_set_cpu_present_bit(gpe_cpu, cpu, &swtchd_to_modern);
}
}
void acpi_switch_to_modern_cphp(AcpiCpuHotplug *gpe_cpu,
CPUHotplugState *cpuhp_state,
uint16_t io_port)
{
MemoryRegion *parent = pci_address_space_io(PCI_DEVICE(gpe_cpu->device));
memory_region_del_subregion(parent, &gpe_cpu->io);
cpu_hotplug_hw_init(parent, gpe_cpu->device, cpuhp_state, io_port);
}
void build_legacy_cpu_hotplug_aml(Aml *ctx, MachineState *machine,
uint16_t io_base)
{
Aml *dev;
Aml *crs;
Aml *pkg;
Aml *field;
Aml *method;
Aml *if_ctx;
Aml *else_ctx;
int i, apic_idx;
Aml *sb_scope = aml_scope("_SB");
uint8_t madt_tmpl[8] = {0x00, 0x08, 0x00, 0x00, 0x00, 0, 0, 0};
Aml *cpu_id = aml_arg(1);
Aml *apic_id = aml_arg(0);
Aml *cpu_on = aml_local(0);
Aml *madt = aml_local(1);
Aml *cpus_map = aml_name(CPU_ON_BITMAP);
Aml *zero = aml_int(0);
Aml *one = aml_int(1);
MachineClass *mc = MACHINE_GET_CLASS(machine);
const CPUArchIdList *apic_ids = mc->possible_cpu_arch_ids(machine);
X86MachineState *x86ms = X86_MACHINE(machine);
/*
* _MAT method - creates an madt apic buffer
* apic_id = Arg0 = Local APIC ID
* cpu_id = Arg1 = Processor ID
* cpu_on = Local0 = CPON flag for this cpu
* madt = Local1 = Buffer (in madt apic form) to return
*/
method = aml_method(CPU_MAT_METHOD, 2, AML_NOTSERIALIZED);
aml_append(method,
aml_store(aml_derefof(aml_index(cpus_map, apic_id)), cpu_on));
aml_append(method,
aml_store(aml_buffer(sizeof(madt_tmpl), madt_tmpl), madt));
/* Update the processor id, lapic id, and enable/disable status */
aml_append(method, aml_store(cpu_id, aml_index(madt, aml_int(2))));
aml_append(method, aml_store(apic_id, aml_index(madt, aml_int(3))));
aml_append(method, aml_store(cpu_on, aml_index(madt, aml_int(4))));
aml_append(method, aml_return(madt));
aml_append(sb_scope, method);
/*
* _STA method - return ON status of cpu
* apic_id = Arg0 = Local APIC ID
* cpu_on = Local0 = CPON flag for this cpu
*/
method = aml_method(CPU_STATUS_METHOD, 1, AML_NOTSERIALIZED);
aml_append(method,
aml_store(aml_derefof(aml_index(cpus_map, apic_id)), cpu_on));
if_ctx = aml_if(cpu_on);
{
aml_append(if_ctx, aml_return(aml_int(0xF)));
}
aml_append(method, if_ctx);
else_ctx = aml_else();
{
aml_append(else_ctx, aml_return(zero));
}
aml_append(method, else_ctx);
aml_append(sb_scope, method);
method = aml_method(CPU_EJECT_METHOD, 2, AML_NOTSERIALIZED);
aml_append(method, aml_sleep(200));
aml_append(sb_scope, method);
method = aml_method(CPU_SCAN_METHOD, 0, AML_NOTSERIALIZED);
{
Aml *while_ctx, *if_ctx2, *else_ctx2;
Aml *bus_check_evt = aml_int(1);
Aml *remove_evt = aml_int(3);
Aml *status_map = aml_local(5); /* Local5 = active cpu bitmap */
Aml *byte = aml_local(2); /* Local2 = last read byte from bitmap */
Aml *idx = aml_local(0); /* Processor ID / APIC ID iterator */
Aml *is_cpu_on = aml_local(1); /* Local1 = CPON flag for cpu */
Aml *status = aml_local(3); /* Local3 = active state for cpu */
aml_append(method, aml_store(aml_name(CPU_STATUS_MAP), status_map));
aml_append(method, aml_store(zero, byte));
aml_append(method, aml_store(zero, idx));
/* While (idx < SizeOf(CPON)) */
while_ctx = aml_while(aml_lless(idx, aml_sizeof(cpus_map)));
aml_append(while_ctx,
aml_store(aml_derefof(aml_index(cpus_map, idx)), is_cpu_on));
if_ctx = aml_if(aml_and(idx, aml_int(0x07), NULL));
{
/* Shift down previously read bitmap byte */
aml_append(if_ctx, aml_shiftright(byte, one, byte));
}
aml_append(while_ctx, if_ctx);
else_ctx = aml_else();
{
/* Read next byte from cpu bitmap */
aml_append(else_ctx, aml_store(aml_derefof(aml_index(status_map,
aml_shiftright(idx, aml_int(3), NULL))), byte));
}
aml_append(while_ctx, else_ctx);
aml_append(while_ctx, aml_store(aml_and(byte, one, NULL), status));
if_ctx = aml_if(aml_lnot(aml_equal(is_cpu_on, status)));
{
/* State change - update CPON with new state */
aml_append(if_ctx, aml_store(status, aml_index(cpus_map, idx)));
if_ctx2 = aml_if(aml_equal(status, one));
{
aml_append(if_ctx2,
aml_call2(AML_NOTIFY_METHOD, idx, bus_check_evt));
}
aml_append(if_ctx, if_ctx2);
else_ctx2 = aml_else();
{
aml_append(else_ctx2,
aml_call2(AML_NOTIFY_METHOD, idx, remove_evt));
}
}
aml_append(if_ctx, else_ctx2);
aml_append(while_ctx, if_ctx);
aml_append(while_ctx, aml_increment(idx)); /* go to next cpu */
aml_append(method, while_ctx);
}
aml_append(sb_scope, method);
/* The current AML generator can cover the APIC ID range [0..255],
* inclusive, for VCPU hotplug. */
QEMU_BUILD_BUG_ON(ACPI_CPU_HOTPLUG_ID_LIMIT > 256);
if (x86ms->apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
error_report("max_cpus is too large. APIC ID of last CPU is %u",
x86ms->apic_id_limit - 1);
exit(1);
}
/* create PCI0.PRES device and its _CRS to reserve CPU hotplug MMIO */
dev = aml_device("PCI0." stringify(CPU_HOTPLUG_RESOURCE_DEVICE));
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0A06")));
aml_append(dev,
aml_name_decl("_UID", aml_string("CPU Hotplug resources"))
);
/* device present, functioning, decoding, not shown in UI */
aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
crs = aml_resource_template();
aml_append(crs,
aml_io(AML_DECODE16, io_base, io_base, 1, ACPI_GPE_PROC_LEN)
);
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(sb_scope, dev);
/* declare CPU hotplug MMIO region and PRS field to access it */
aml_append(sb_scope, aml_operation_region(
"PRST", AML_SYSTEM_IO, aml_int(io_base), ACPI_GPE_PROC_LEN));
field = aml_field("PRST", AML_BYTE_ACC, AML_NOLOCK, AML_PRESERVE);
aml_append(field, aml_named_field("PRS", 256));
aml_append(sb_scope, field);
/* build Processor object for each processor */
for (i = 0; i < apic_ids->len; i++) {
int cpu_apic_id = apic_ids->cpus[i].arch_id;
assert(cpu_apic_id < ACPI_CPU_HOTPLUG_ID_LIMIT);
dev = aml_processor(i, 0, 0, "CP%.02X", cpu_apic_id);
method = aml_method("_MAT", 0, AML_NOTSERIALIZED);
aml_append(method,
aml_return(aml_call2(CPU_MAT_METHOD,
aml_int(cpu_apic_id), aml_int(i))
));
aml_append(dev, method);
method = aml_method("_STA", 0, AML_NOTSERIALIZED);
aml_append(method,
aml_return(aml_call1(CPU_STATUS_METHOD, aml_int(cpu_apic_id))));
aml_append(dev, method);
method = aml_method("_EJ0", 1, AML_NOTSERIALIZED);
aml_append(method,
aml_return(aml_call2(CPU_EJECT_METHOD, aml_int(cpu_apic_id),
aml_arg(0)))
);
aml_append(dev, method);
aml_append(sb_scope, dev);
}
/* build this code:
* Method(NTFY, 2) {If (LEqual(Arg0, 0x00)) {Notify(CP00, Arg1)} ...}
*/
/* Arg0 = APIC ID */
method = aml_method(AML_NOTIFY_METHOD, 2, AML_NOTSERIALIZED);
for (i = 0; i < apic_ids->len; i++) {
int cpu_apic_id = apic_ids->cpus[i].arch_id;
if_ctx = aml_if(aml_equal(aml_arg(0), aml_int(cpu_apic_id)));
aml_append(if_ctx,
aml_notify(aml_name("CP%.02X", cpu_apic_id), aml_arg(1))
);
aml_append(method, if_ctx);
}
aml_append(sb_scope, method);
/* build "Name(CPON, Package() { One, One, ..., Zero, Zero, ... })"
*
* Note: The ability to create variable-sized packages was first
* introduced in ACPI 2.0. ACPI 1.0 only allowed fixed-size packages
* ith up to 255 elements. Windows guests up to win2k8 fail when
* VarPackageOp is used.
*/
pkg = x86ms->apic_id_limit <= 255 ? aml_package(x86ms->apic_id_limit) :
aml_varpackage(x86ms->apic_id_limit);
for (i = 0, apic_idx = 0; i < apic_ids->len; i++) {
int cpu_apic_id = apic_ids->cpus[i].arch_id;
for (; apic_idx < cpu_apic_id; apic_idx++) {
aml_append(pkg, aml_int(0));
}
aml_append(pkg, aml_int(apic_ids->cpus[i].cpu ? 1 : 0));
apic_idx = cpu_apic_id + 1;
}
aml_append(sb_scope, aml_name_decl(CPU_ON_BITMAP, pkg));
aml_append(ctx, sb_scope);
method = aml_method("\\_GPE._E02", 0, AML_NOTSERIALIZED);
aml_append(method, aml_call0("\\_SB." CPU_SCAN_METHOD));
aml_append(ctx, method);
}
|