1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
/*
* Virtual Machine Clock Device
*
* Copyright © 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Authors: David Woodhouse <dwmw2@infradead.org>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/module.h"
#include "hw/i386/e820_memory_layout.h"
#include "hw/acpi/acpi.h"
#include "hw/acpi/aml-build.h"
#include "hw/acpi/vmclock.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "migration/vmstate.h"
#include "system/reset.h"
#include "standard-headers/linux/vmclock-abi.h"
void vmclock_build_acpi(VmclockState *vms, GArray *table_data,
BIOSLinker *linker, const char *oem_id)
{
Aml *ssdt, *dev, *scope, *crs;
AcpiTable table = { .sig = "SSDT", .rev = 1,
.oem_id = oem_id, .oem_table_id = "VMCLOCK" };
/* Put VMCLOCK into a separate SSDT table */
acpi_table_begin(&table, table_data);
ssdt = init_aml_allocator();
scope = aml_scope("\\_SB");
dev = aml_device("VCLK");
aml_append(dev, aml_name_decl("_HID", aml_string("AMZNC10C")));
aml_append(dev, aml_name_decl("_CID", aml_string("VMCLOCK")));
aml_append(dev, aml_name_decl("_DDN", aml_string("VMCLOCK")));
/* Simple status method */
aml_append(dev, aml_name_decl("_STA", aml_int(0xf)));
crs = aml_resource_template();
aml_append(crs, aml_qword_memory(AML_POS_DECODE,
AML_MIN_FIXED, AML_MAX_FIXED,
AML_CACHEABLE, AML_READ_ONLY,
0xffffffffffffffffULL,
vms->physaddr,
vms->physaddr + VMCLOCK_SIZE - 1,
0, VMCLOCK_SIZE));
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
aml_append(ssdt, scope);
g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
acpi_table_end(linker, &table);
free_aml_allocator();
}
static void vmclock_update_guest(VmclockState *vms)
{
uint64_t disruption_marker;
uint32_t seq_count;
if (!vms->clk) {
return;
}
seq_count = le32_to_cpu(vms->clk->seq_count) | 1;
vms->clk->seq_count = cpu_to_le32(seq_count);
/* These barriers pair with read barriers in the guest */
smp_wmb();
disruption_marker = le64_to_cpu(vms->clk->disruption_marker);
disruption_marker++;
vms->clk->disruption_marker = cpu_to_le64(disruption_marker);
/* These barriers pair with read barriers in the guest */
smp_wmb();
vms->clk->seq_count = cpu_to_le32(seq_count + 1);
}
/*
* After restoring an image, we need to update the guest memory to notify
* it of clock disruption.
*/
static int vmclock_post_load(void *opaque, int version_id)
{
VmclockState *vms = opaque;
vmclock_update_guest(vms);
return 0;
}
static const VMStateDescription vmstate_vmclock = {
.name = "vmclock",
.version_id = 1,
.minimum_version_id = 1,
.post_load = vmclock_post_load,
.fields = (const VMStateField[]) {
VMSTATE_UINT64(physaddr, VmclockState),
VMSTATE_END_OF_LIST()
},
};
static void vmclock_handle_reset(void *opaque)
{
VmclockState *vms = VMCLOCK(opaque);
if (!memory_region_is_mapped(&vms->clk_page)) {
memory_region_add_subregion_overlap(get_system_memory(),
vms->physaddr,
&vms->clk_page, 0);
}
}
static void vmclock_realize(DeviceState *dev, Error **errp)
{
VmclockState *vms = VMCLOCK(dev);
/*
* Given that this function is executing, there is at least one VMCLOCK
* device. Check if there are several.
*/
if (!find_vmclock_dev()) {
error_setg(errp, "at most one %s device is permitted", TYPE_VMCLOCK);
return;
}
vms->physaddr = VMCLOCK_ADDR;
e820_add_entry(vms->physaddr, VMCLOCK_SIZE, E820_RESERVED);
memory_region_init_ram(&vms->clk_page, OBJECT(dev), "vmclock_page",
VMCLOCK_SIZE, &error_abort);
memory_region_set_enabled(&vms->clk_page, true);
vms->clk = memory_region_get_ram_ptr(&vms->clk_page);
memset(vms->clk, 0, VMCLOCK_SIZE);
vms->clk->magic = cpu_to_le32(VMCLOCK_MAGIC);
vms->clk->size = cpu_to_le16(VMCLOCK_SIZE);
vms->clk->version = cpu_to_le16(1);
/* These are all zero and thus default, but be explicit */
vms->clk->clock_status = VMCLOCK_STATUS_UNKNOWN;
vms->clk->counter_id = VMCLOCK_COUNTER_INVALID;
qemu_register_reset(vmclock_handle_reset, vms);
vmclock_update_guest(vms);
}
static void vmclock_device_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &vmstate_vmclock;
dc->realize = vmclock_realize;
dc->hotpluggable = false;
set_bit(DEVICE_CATEGORY_MISC, dc->categories);
}
static const TypeInfo vmclock_device_info = {
.name = TYPE_VMCLOCK,
.parent = TYPE_DEVICE,
.instance_size = sizeof(VmclockState),
.class_init = vmclock_device_class_init,
};
static void vmclock_register_types(void)
{
type_register_static(&vmclock_device_info);
}
type_init(vmclock_register_types)
|