1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
/*
* ARM CMSDK APB UART emulation
*
* Copyright (c) 2017 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/* This is a model of the "APB UART" which is part of the Cortex-M
* System Design Kit (CMSDK) and documented in the Cortex-M System
* Design Kit Technical Reference Manual (ARM DDI0479C):
* https://developer.arm.com/products/system-design/system-design-kits/cortex-m-system-design-kit
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "hw/registerfields.h"
#include "chardev/char-fe.h"
#include "chardev/char-serial.h"
#include "hw/char/cmsdk-apb-uart.h"
#include "hw/irq.h"
#include "hw/qdev-properties-system.h"
REG32(DATA, 0)
REG32(STATE, 4)
FIELD(STATE, TXFULL, 0, 1)
FIELD(STATE, RXFULL, 1, 1)
FIELD(STATE, TXOVERRUN, 2, 1)
FIELD(STATE, RXOVERRUN, 3, 1)
REG32(CTRL, 8)
FIELD(CTRL, TX_EN, 0, 1)
FIELD(CTRL, RX_EN, 1, 1)
FIELD(CTRL, TX_INTEN, 2, 1)
FIELD(CTRL, RX_INTEN, 3, 1)
FIELD(CTRL, TXO_INTEN, 4, 1)
FIELD(CTRL, RXO_INTEN, 5, 1)
FIELD(CTRL, HSTEST, 6, 1)
REG32(INTSTATUS, 0xc)
FIELD(INTSTATUS, TX, 0, 1)
FIELD(INTSTATUS, RX, 1, 1)
FIELD(INTSTATUS, TXO, 2, 1)
FIELD(INTSTATUS, RXO, 3, 1)
REG32(BAUDDIV, 0x10)
REG32(PID4, 0xFD0)
REG32(PID5, 0xFD4)
REG32(PID6, 0xFD8)
REG32(PID7, 0xFDC)
REG32(PID0, 0xFE0)
REG32(PID1, 0xFE4)
REG32(PID2, 0xFE8)
REG32(PID3, 0xFEC)
REG32(CID0, 0xFF0)
REG32(CID1, 0xFF4)
REG32(CID2, 0xFF8)
REG32(CID3, 0xFFC)
/* PID/CID values */
static const int uart_id[] = {
0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
0x21, 0xb8, 0x1b, 0x00, /* PID0..PID3 */
0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
};
static bool uart_baudrate_ok(CMSDKAPBUART *s)
{
/* The minimum permitted bauddiv setting is 16, so we just ignore
* settings below that (usually this means the device has just
* been reset and not yet programmed).
*/
return s->bauddiv >= 16 && s->bauddiv <= s->pclk_frq;
}
static void uart_update_parameters(CMSDKAPBUART *s)
{
QEMUSerialSetParams ssp;
/* This UART is always 8N1 but the baud rate is programmable. */
if (!uart_baudrate_ok(s)) {
return;
}
ssp.data_bits = 8;
ssp.parity = 'N';
ssp.stop_bits = 1;
ssp.speed = s->pclk_frq / s->bauddiv;
qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
trace_cmsdk_apb_uart_set_params(ssp.speed);
}
static void cmsdk_apb_uart_update(CMSDKAPBUART *s)
{
/* update outbound irqs, including handling the way the rxo and txo
* interrupt status bits are just logical AND of the overrun bit in
* STATE and the overrun interrupt enable bit in CTRL.
*/
uint32_t omask = (R_INTSTATUS_RXO_MASK | R_INTSTATUS_TXO_MASK);
s->intstatus &= ~omask;
s->intstatus |= (s->state & (s->ctrl >> 2) & omask);
qemu_set_irq(s->txint, !!(s->intstatus & R_INTSTATUS_TX_MASK));
qemu_set_irq(s->rxint, !!(s->intstatus & R_INTSTATUS_RX_MASK));
qemu_set_irq(s->txovrint, !!(s->intstatus & R_INTSTATUS_TXO_MASK));
qemu_set_irq(s->rxovrint, !!(s->intstatus & R_INTSTATUS_RXO_MASK));
qemu_set_irq(s->uartint, !!(s->intstatus));
}
static int uart_can_receive(void *opaque)
{
CMSDKAPBUART *s = CMSDK_APB_UART(opaque);
/* We can take a char if RX is enabled and the buffer is empty */
if (s->ctrl & R_CTRL_RX_EN_MASK && !(s->state & R_STATE_RXFULL_MASK)) {
return 1;
}
return 0;
}
static void uart_receive(void *opaque, const uint8_t *buf, int size)
{
CMSDKAPBUART *s = CMSDK_APB_UART(opaque);
trace_cmsdk_apb_uart_receive(*buf);
/* In fact uart_can_receive() ensures that we can't be
* called unless RX is enabled and the buffer is empty,
* but we include this logic as documentation of what the
* hardware does if a character arrives in these circumstances.
*/
if (!(s->ctrl & R_CTRL_RX_EN_MASK)) {
/* Just drop the character on the floor */
return;
}
if (s->state & R_STATE_RXFULL_MASK) {
s->state |= R_STATE_RXOVERRUN_MASK;
}
s->rxbuf = *buf;
s->state |= R_STATE_RXFULL_MASK;
if (s->ctrl & R_CTRL_RX_INTEN_MASK) {
s->intstatus |= R_INTSTATUS_RX_MASK;
}
cmsdk_apb_uart_update(s);
}
static uint64_t uart_read(void *opaque, hwaddr offset, unsigned size)
{
CMSDKAPBUART *s = CMSDK_APB_UART(opaque);
uint64_t r;
switch (offset) {
case A_DATA:
r = s->rxbuf;
s->state &= ~R_STATE_RXFULL_MASK;
cmsdk_apb_uart_update(s);
qemu_chr_fe_accept_input(&s->chr);
break;
case A_STATE:
r = s->state;
break;
case A_CTRL:
r = s->ctrl;
break;
case A_INTSTATUS:
r = s->intstatus;
break;
case A_BAUDDIV:
r = s->bauddiv;
break;
case A_PID4 ... A_CID3:
r = uart_id[(offset - A_PID4) / 4];
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"CMSDK APB UART read: bad offset %x\n", (int) offset);
r = 0;
break;
}
trace_cmsdk_apb_uart_read(offset, r, size);
return r;
}
/* Try to send tx data, and arrange to be called back later if
* we can't (ie the char backend is busy/blocking).
*/
static gboolean uart_transmit(void *do_not_use, GIOCondition cond, void *opaque)
{
CMSDKAPBUART *s = CMSDK_APB_UART(opaque);
int ret;
s->watch_tag = 0;
if (!(s->ctrl & R_CTRL_TX_EN_MASK) || !(s->state & R_STATE_TXFULL_MASK)) {
return G_SOURCE_REMOVE;
}
ret = qemu_chr_fe_write(&s->chr, &s->txbuf, 1);
if (ret <= 0) {
s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
uart_transmit, s);
if (!s->watch_tag) {
/* Most common reason to be here is "no chardev backend":
* just insta-drain the buffer, so the serial output
* goes into a void, rather than blocking the guest.
*/
goto buffer_drained;
}
/* Transmit pending */
trace_cmsdk_apb_uart_tx_pending();
return G_SOURCE_REMOVE;
}
buffer_drained:
/* Character successfully sent */
trace_cmsdk_apb_uart_tx(s->txbuf);
s->state &= ~R_STATE_TXFULL_MASK;
/* Going from TXFULL set to clear triggers the tx interrupt */
if (s->ctrl & R_CTRL_TX_INTEN_MASK) {
s->intstatus |= R_INTSTATUS_TX_MASK;
}
cmsdk_apb_uart_update(s);
return G_SOURCE_REMOVE;
}
static void uart_cancel_transmit(CMSDKAPBUART *s)
{
if (s->watch_tag) {
g_source_remove(s->watch_tag);
s->watch_tag = 0;
}
}
static void uart_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
CMSDKAPBUART *s = CMSDK_APB_UART(opaque);
trace_cmsdk_apb_uart_write(offset, value, size);
switch (offset) {
case A_DATA:
s->txbuf = value;
if (s->state & R_STATE_TXFULL_MASK) {
/* Buffer already full -- note the overrun and let the
* existing pending transmit callback handle the new char.
*/
s->state |= R_STATE_TXOVERRUN_MASK;
cmsdk_apb_uart_update(s);
} else {
s->state |= R_STATE_TXFULL_MASK;
uart_transmit(NULL, G_IO_OUT, s);
}
break;
case A_STATE:
/* Bits 0 and 1 are read only; bits 2 and 3 are W1C */
s->state &= ~(value &
(R_STATE_TXOVERRUN_MASK | R_STATE_RXOVERRUN_MASK));
cmsdk_apb_uart_update(s);
break;
case A_CTRL:
s->ctrl = value & 0x7f;
if ((s->ctrl & R_CTRL_TX_EN_MASK) && !uart_baudrate_ok(s)) {
qemu_log_mask(LOG_GUEST_ERROR,
"CMSDK APB UART: Tx enabled with invalid baudrate\n");
}
cmsdk_apb_uart_update(s);
break;
case A_INTSTATUS:
/* All bits are W1C. Clearing the overrun interrupt bits really
* clears the overrun status bits in the STATE register (which
* is then reflected into the intstatus value by the update function).
*/
s->state &= ~(value & (R_INTSTATUS_TXO_MASK | R_INTSTATUS_RXO_MASK));
s->intstatus &= ~value;
cmsdk_apb_uart_update(s);
break;
case A_BAUDDIV:
s->bauddiv = value & 0xFFFFF;
uart_update_parameters(s);
break;
case A_PID4 ... A_CID3:
qemu_log_mask(LOG_GUEST_ERROR,
"CMSDK APB UART write: write to RO offset 0x%x\n",
(int)offset);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"CMSDK APB UART write: bad offset 0x%x\n", (int) offset);
break;
}
}
static const MemoryRegionOps uart_ops = {
.read = uart_read,
.write = uart_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void cmsdk_apb_uart_reset(DeviceState *dev)
{
CMSDKAPBUART *s = CMSDK_APB_UART(dev);
trace_cmsdk_apb_uart_reset();
uart_cancel_transmit(s);
s->state = 0;
s->ctrl = 0;
s->intstatus = 0;
s->bauddiv = 0;
s->txbuf = 0;
s->rxbuf = 0;
}
static void cmsdk_apb_uart_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
CMSDKAPBUART *s = CMSDK_APB_UART(obj);
memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->txint);
sysbus_init_irq(sbd, &s->rxint);
sysbus_init_irq(sbd, &s->txovrint);
sysbus_init_irq(sbd, &s->rxovrint);
sysbus_init_irq(sbd, &s->uartint);
}
static void cmsdk_apb_uart_realize(DeviceState *dev, Error **errp)
{
CMSDKAPBUART *s = CMSDK_APB_UART(dev);
if (s->pclk_frq == 0) {
error_setg(errp, "CMSDK APB UART: pclk-frq property must be set");
return;
}
/* This UART has no flow control, so we do not need to register
* an event handler to deal with CHR_EVENT_BREAK.
*/
qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
NULL, NULL, s, NULL, true);
}
static int cmsdk_apb_uart_post_load(void *opaque, int version_id)
{
CMSDKAPBUART *s = CMSDK_APB_UART(opaque);
/* If we have a pending character, arrange to resend it. */
if (s->state & R_STATE_TXFULL_MASK) {
s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
uart_transmit, s);
}
uart_update_parameters(s);
return 0;
}
static const VMStateDescription cmsdk_apb_uart_vmstate = {
.name = "cmsdk-apb-uart",
.version_id = 1,
.minimum_version_id = 1,
.post_load = cmsdk_apb_uart_post_load,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(state, CMSDKAPBUART),
VMSTATE_UINT32(ctrl, CMSDKAPBUART),
VMSTATE_UINT32(intstatus, CMSDKAPBUART),
VMSTATE_UINT32(bauddiv, CMSDKAPBUART),
VMSTATE_UINT8(txbuf, CMSDKAPBUART),
VMSTATE_UINT8(rxbuf, CMSDKAPBUART),
VMSTATE_END_OF_LIST()
}
};
static const Property cmsdk_apb_uart_properties[] = {
DEFINE_PROP_CHR("chardev", CMSDKAPBUART, chr),
DEFINE_PROP_UINT32("pclk-frq", CMSDKAPBUART, pclk_frq, 0),
};
static void cmsdk_apb_uart_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = cmsdk_apb_uart_realize;
dc->vmsd = &cmsdk_apb_uart_vmstate;
device_class_set_legacy_reset(dc, cmsdk_apb_uart_reset);
device_class_set_props(dc, cmsdk_apb_uart_properties);
}
static const TypeInfo cmsdk_apb_uart_info = {
.name = TYPE_CMSDK_APB_UART,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(CMSDKAPBUART),
.instance_init = cmsdk_apb_uart_init,
.class_init = cmsdk_apb_uart_class_init,
};
static void cmsdk_apb_uart_register_types(void)
{
type_register_static(&cmsdk_apb_uart_info);
}
type_init(cmsdk_apb_uart_register_types);
|