1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
|
/*
* NeXT Cube System Driver
*
* Copyright (c) 2011 Bryce Lanham
* Copyright (c) 2024 Mark Cave-Ayland
*
* This code is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published
* by the Free Software Foundation; either version 2 of the License,
* or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "exec/hwaddr.h"
#include "system/system.h"
#include "system/qtest.h"
#include "hw/irq.h"
#include "hw/m68k/next-cube.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/scsi/esp.h"
#include "hw/sysbus.h"
#include "qom/object.h"
#include "hw/char/escc.h" /* ZILOG 8530 Serial Emulation */
#include "hw/block/fdc.h"
#include "hw/misc/empty_slot.h"
#include "hw/qdev-properties.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "ui/console.h"
#include "target/m68k/cpu.h"
#include "migration/vmstate.h"
/* #define DEBUG_NEXT */
#ifdef DEBUG_NEXT
#define DPRINTF(fmt, ...) \
do { printf("NeXT: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) do { } while (0)
#endif
#define ENTRY 0x0100001e
#define RAM_SIZE 0x4000000
#define ROM_FILE "Rev_2.5_v66.bin"
#define TYPE_NEXT_RTC "next-rtc"
OBJECT_DECLARE_SIMPLE_TYPE(NeXTRTC, NEXT_RTC)
struct NeXTRTC {
SysBusDevice parent_obj;
int8_t phase;
uint8_t ram[32];
uint8_t command;
uint8_t value;
uint8_t status;
uint8_t control;
uint8_t retval;
qemu_irq data_out_irq;
qemu_irq power_irq;
};
#define TYPE_NEXT_SCSI "next-scsi"
OBJECT_DECLARE_SIMPLE_TYPE(NeXTSCSI, NEXT_SCSI)
/* NeXT SCSI Controller */
struct NeXTSCSI {
SysBusDevice parent_obj;
MemoryRegion scsi_mem;
SysBusESPState sysbus_esp;
MemoryRegion scsi_csr_mem;
uint8_t scsi_csr_1;
uint8_t scsi_csr_2;
};
#define TYPE_NEXT_PC "next-pc"
OBJECT_DECLARE_SIMPLE_TYPE(NeXTPC, NEXT_PC)
/* NeXT Peripheral Controller */
struct NeXTPC {
SysBusDevice parent_obj;
M68kCPU *cpu;
MemoryRegion floppy_mem;
MemoryRegion timer_mem;
MemoryRegion dummyen_mem;
MemoryRegion mmiomem;
MemoryRegion scrmem;
uint32_t scr1;
uint32_t scr2;
uint32_t old_scr2;
uint32_t int_mask;
uint32_t int_status;
uint32_t led;
NeXTSCSI next_scsi;
qemu_irq scsi_reset;
qemu_irq scsi_dma;
ESCCState escc;
NeXTRTC rtc;
qemu_irq rtc_data_irq;
qemu_irq rtc_cmd_reset_irq;
};
typedef struct next_dma {
uint32_t csr;
uint32_t saved_next;
uint32_t saved_limit;
uint32_t saved_start;
uint32_t saved_stop;
uint32_t next;
uint32_t limit;
uint32_t start;
uint32_t stop;
uint32_t next_initbuf;
uint32_t size;
} next_dma;
#define TYPE_NEXT_MACHINE MACHINE_TYPE_NAME("next-cube")
OBJECT_DECLARE_SIMPLE_TYPE(NeXTState, NEXT_MACHINE)
struct NeXTState {
MachineState parent;
MemoryRegion rom;
MemoryRegion rom2;
MemoryRegion dmamem;
MemoryRegion bmapm1;
MemoryRegion bmapm2;
next_dma dma[10];
};
/* Thanks to NeXT forums for this */
/*
static const uint8_t rtc_ram3[32] = {
0x94, 0x0f, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x7B, 0x00,
0x00, 0x00, 0x65, 0x6e, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x50, 0x13
};
*/
static const uint8_t rtc_ram2[32] = {
0x94, 0x0f, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x4b, 0x00,
0x41, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x7e,
};
#define SCR2_RTCLK 0x2
#define SCR2_RTDATA 0x4
#define SCR2_TOBCD(x) (((x / 10) << 4) + (x % 10))
static void next_scr2_led_update(NeXTPC *s)
{
if (s->scr2 & 0x1) {
DPRINTF("fault!\n");
s->led++;
if (s->led == 10) {
DPRINTF("LED flashing, possible fault!\n");
s->led = 0;
}
}
}
static void next_scr2_rtc_update(NeXTPC *s)
{
uint8_t old_scr2_rtc, scr2_rtc;
old_scr2_rtc = extract32(s->old_scr2, 8, 8);
scr2_rtc = extract32(s->scr2, 8, 8);
if (scr2_rtc & 0x1) {
/* DPRINTF("RTC %x phase %i\n", scr2_2, rtc->phase); */
/* If we are in going down clock... do something */
if (((old_scr2_rtc & SCR2_RTCLK) != (scr2_rtc & SCR2_RTCLK)) &&
((scr2_rtc & SCR2_RTCLK) == 0)) {
if (scr2_rtc & SCR2_RTDATA) {
qemu_irq_raise(s->rtc_data_irq);
} else {
qemu_irq_lower(s->rtc_data_irq);
}
}
} else {
/* else end or abort */
qemu_irq_raise(s->rtc_cmd_reset_irq);
}
}
static uint64_t next_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
NeXTPC *s = NEXT_PC(opaque);
uint64_t val;
switch (addr) {
case 0x2000: /* 0x2007000 */
/* DPRINTF("Read INT status: %x\n", s->int_status); */
val = s->int_status;
break;
case 0x2800: /* 0x2007800 */
DPRINTF("MMIO Read INT mask: %x\n", s->int_mask);
val = s->int_mask;
break;
case 0x7000 ... 0x7003: /* 0x200c000 */
val = extract32(s->scr1, (4 - (addr - 0x7000) - size) << 3,
size << 3);
break;
case 0x8000 ... 0x8003: /* 0x200d000 */
val = extract32(s->scr2, (4 - (addr - 0x8000) - size) << 3,
size << 3);
break;
default:
val = 0;
DPRINTF("MMIO Read @ 0x%"HWADDR_PRIx" size %d\n", addr, size);
break;
}
return val;
}
static void next_mmio_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
NeXTPC *s = NEXT_PC(opaque);
switch (addr) {
case 0x2000: /* 0x2007000 */
DPRINTF("INT Status old: %x new: %x\n", s->int_status,
(unsigned int)val);
s->int_status = val;
break;
case 0x2800: /* 0x2007800 */
DPRINTF("INT Mask old: %x new: %x\n", s->int_mask, (unsigned int)val);
s->int_mask = val;
break;
case 0x7000 ... 0x7003: /* 0x200c000 */
DPRINTF("SCR1 Write: %x\n", (unsigned int)val);
s->scr1 = deposit32(s->scr1, (4 - (addr - 0x7000) - size) << 3,
size << 3, val);
break;
case 0x8000 ... 0x8003: /* 0x200d000 */
s->scr2 = deposit32(s->scr2, (4 - (addr - 0x8000) - size) << 3,
size << 3, val);
next_scr2_led_update(s);
next_scr2_rtc_update(s);
s->old_scr2 = s->scr2;
break;
default:
DPRINTF("MMIO Write @ 0x%"HWADDR_PRIx " with 0x%x size %u\n", addr,
(unsigned int)val, size);
}
}
static const MemoryRegionOps next_mmio_ops = {
.read = next_mmio_read,
.write = next_mmio_write,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_BIG_ENDIAN,
};
#define SCSICSR_ENABLE 0x01
#define SCSICSR_RESET 0x02 /* reset scsi dma */
#define SCSICSR_FIFOFL 0x04
#define SCSICSR_DMADIR 0x08 /* if set, scsi to mem */
#define SCSICSR_CPUDMA 0x10 /* if set, dma enabled */
#define SCSICSR_INTMASK 0x20 /* if set, interrupt enabled */
#define NEXTDMA_SCSI(x) (0x10 + x)
#define NEXTDMA_FD(x) (0x10 + x)
#define NEXTDMA_ENTX(x) (0x110 + x)
#define NEXTDMA_ENRX(x) (0x150 + x)
#define NEXTDMA_CSR 0x0
#define NEXTDMA_NEXT 0x4000
#define NEXTDMA_LIMIT 0x4004
#define NEXTDMA_START 0x4008
#define NEXTDMA_STOP 0x400c
#define NEXTDMA_NEXT_INIT 0x4200
#define NEXTDMA_SIZE 0x4204
static void next_dma_write(void *opaque, hwaddr addr, uint64_t val,
unsigned int size)
{
NeXTState *next_state = NEXT_MACHINE(opaque);
switch (addr) {
case NEXTDMA_ENRX(NEXTDMA_CSR):
if (val & DMA_DEV2M) {
next_state->dma[NEXTDMA_ENRX].csr |= DMA_DEV2M;
}
if (val & DMA_SETENABLE) {
/* DPRINTF("SCSI DMA ENABLE\n"); */
next_state->dma[NEXTDMA_ENRX].csr |= DMA_ENABLE;
}
if (val & DMA_SETSUPDATE) {
next_state->dma[NEXTDMA_ENRX].csr |= DMA_SUPDATE;
}
if (val & DMA_CLRCOMPLETE) {
next_state->dma[NEXTDMA_ENRX].csr &= ~DMA_COMPLETE;
}
if (val & DMA_RESET) {
next_state->dma[NEXTDMA_ENRX].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
DMA_ENABLE | DMA_DEV2M);
}
/* DPRINTF("RXCSR \tWrite: %x\n",value); */
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
next_state->dma[NEXTDMA_ENRX].next_initbuf = val;
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT):
next_state->dma[NEXTDMA_ENRX].next = val;
break;
case NEXTDMA_ENRX(NEXTDMA_LIMIT):
next_state->dma[NEXTDMA_ENRX].limit = val;
break;
case NEXTDMA_SCSI(NEXTDMA_CSR):
if (val & DMA_DEV2M) {
next_state->dma[NEXTDMA_SCSI].csr |= DMA_DEV2M;
}
if (val & DMA_SETENABLE) {
/* DPRINTF("SCSI DMA ENABLE\n"); */
next_state->dma[NEXTDMA_SCSI].csr |= DMA_ENABLE;
}
if (val & DMA_SETSUPDATE) {
next_state->dma[NEXTDMA_SCSI].csr |= DMA_SUPDATE;
}
if (val & DMA_CLRCOMPLETE) {
next_state->dma[NEXTDMA_SCSI].csr &= ~DMA_COMPLETE;
}
if (val & DMA_RESET) {
next_state->dma[NEXTDMA_SCSI].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
DMA_ENABLE | DMA_DEV2M);
/* DPRINTF("SCSI DMA RESET\n"); */
}
/* DPRINTF("RXCSR \tWrite: %x\n",value); */
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT):
next_state->dma[NEXTDMA_SCSI].next = val;
break;
case NEXTDMA_SCSI(NEXTDMA_LIMIT):
next_state->dma[NEXTDMA_SCSI].limit = val;
break;
case NEXTDMA_SCSI(NEXTDMA_START):
next_state->dma[NEXTDMA_SCSI].start = val;
break;
case NEXTDMA_SCSI(NEXTDMA_STOP):
next_state->dma[NEXTDMA_SCSI].stop = val;
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
next_state->dma[NEXTDMA_SCSI].next_initbuf = val;
break;
default:
DPRINTF("DMA write @ %x w/ %x\n", (unsigned)addr, (unsigned)val);
}
}
static uint64_t next_dma_read(void *opaque, hwaddr addr, unsigned int size)
{
NeXTState *next_state = NEXT_MACHINE(opaque);
uint64_t val;
switch (addr) {
case NEXTDMA_SCSI(NEXTDMA_CSR):
DPRINTF("SCSI DMA CSR READ\n");
val = next_state->dma[NEXTDMA_SCSI].csr;
break;
case NEXTDMA_ENRX(NEXTDMA_CSR):
val = next_state->dma[NEXTDMA_ENRX].csr;
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
val = next_state->dma[NEXTDMA_ENRX].next_initbuf;
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT):
val = next_state->dma[NEXTDMA_ENRX].next;
break;
case NEXTDMA_ENRX(NEXTDMA_LIMIT):
val = next_state->dma[NEXTDMA_ENRX].limit;
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT):
val = next_state->dma[NEXTDMA_SCSI].next;
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
val = next_state->dma[NEXTDMA_SCSI].next_initbuf;
break;
case NEXTDMA_SCSI(NEXTDMA_LIMIT):
val = next_state->dma[NEXTDMA_SCSI].limit;
break;
case NEXTDMA_SCSI(NEXTDMA_START):
val = next_state->dma[NEXTDMA_SCSI].start;
break;
case NEXTDMA_SCSI(NEXTDMA_STOP):
val = next_state->dma[NEXTDMA_SCSI].stop;
break;
default:
DPRINTF("DMA read @ %x\n", (unsigned int)addr);
val = 0;
}
/*
* once the csr's are done, subtract 0x3FEC from the addr, and that will
* normalize the upper registers
*/
return val;
}
static const MemoryRegionOps next_dma_ops = {
.read = next_dma_read,
.write = next_dma_write,
.impl.min_access_size = 4,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.endianness = DEVICE_BIG_ENDIAN,
};
static void next_irq(void *opaque, int number, int level)
{
NeXTPC *s = NEXT_PC(opaque);
M68kCPU *cpu = s->cpu;
int shift = 0;
/* first switch sets interrupt status */
/* DPRINTF("IRQ %i\n",number); */
switch (number) {
/* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
case NEXT_FD_I:
shift = 7;
break;
case NEXT_KBD_I:
shift = 3;
break;
case NEXT_PWR_I:
shift = 2;
break;
case NEXT_ENRX_I:
shift = 9;
break;
case NEXT_ENTX_I:
shift = 10;
break;
case NEXT_SCSI_I:
shift = 12;
break;
case NEXT_CLK_I:
shift = 5;
break;
/* level 5 - scc (serial) */
case NEXT_SCC_I:
shift = 17;
break;
/* level 6 - audio etherrx/tx dma */
case NEXT_ENTX_DMA_I:
shift = 28;
break;
case NEXT_ENRX_DMA_I:
shift = 27;
break;
case NEXT_SCSI_DMA_I:
shift = 26;
break;
case NEXT_SND_I:
shift = 23;
break;
case NEXT_SCC_DMA_I:
shift = 21;
break;
}
/*
* this HAS to be wrong, the interrupt handlers in mach and together
* int_status and int_mask and return if there is a hit
*/
if (s->int_mask & (1 << shift)) {
DPRINTF("%x interrupt masked @ %x\n", 1 << shift, cpu->env.pc);
/* return; */
}
/* second switch triggers the correct interrupt */
if (level) {
s->int_status |= 1 << shift;
switch (number) {
/* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
case NEXT_FD_I:
case NEXT_KBD_I:
case NEXT_PWR_I:
case NEXT_ENRX_I:
case NEXT_ENTX_I:
case NEXT_SCSI_I:
case NEXT_CLK_I:
m68k_set_irq_level(cpu, 3, 27);
break;
/* level 5 - scc (serial) */
case NEXT_SCC_I:
m68k_set_irq_level(cpu, 5, 29);
break;
/* level 6 - audio etherrx/tx dma */
case NEXT_ENTX_DMA_I:
case NEXT_ENRX_DMA_I:
case NEXT_SCSI_DMA_I:
case NEXT_SND_I:
case NEXT_SCC_DMA_I:
m68k_set_irq_level(cpu, 6, 30);
break;
}
} else {
s->int_status &= ~(1 << shift);
cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
}
}
static void nextdma_write(void *opaque, uint8_t *buf, int size, int type)
{
uint32_t base_addr;
int irq = 0;
uint8_t align = 16;
NeXTState *next_state = NEXT_MACHINE(qdev_get_machine());
if (type == NEXTDMA_ENRX || type == NEXTDMA_ENTX) {
align = 32;
}
/* Most DMA is supposedly 16 byte aligned */
if ((size % align) != 0) {
size -= size % align;
size += align;
}
/*
* prom sets the dma start using initbuf while the bootloader uses next
* so we check to see if initbuf is 0
*/
if (next_state->dma[type].next_initbuf == 0) {
base_addr = next_state->dma[type].next;
} else {
base_addr = next_state->dma[type].next_initbuf;
}
cpu_physical_memory_write(base_addr, buf, size);
next_state->dma[type].next_initbuf = 0;
/* saved limit is checked to calculate packet size by both, rom and netbsd */
next_state->dma[type].saved_limit = (next_state->dma[type].next + size);
next_state->dma[type].saved_next = (next_state->dma[type].next);
/*
* 32 bytes under savedbase seems to be some kind of register
* of which the purpose is unknown as of yet
*/
/* stl_phys(s->rx_dma.base-32,0xFFFFFFFF); */
if (!(next_state->dma[type].csr & DMA_SUPDATE)) {
next_state->dma[type].next = next_state->dma[type].start;
next_state->dma[type].limit = next_state->dma[type].stop;
}
/* Set dma registers and raise an irq */
next_state->dma[type].csr |= DMA_COMPLETE; /* DON'T CHANGE THIS! */
switch (type) {
case NEXTDMA_SCSI:
irq = NEXT_SCSI_DMA_I;
break;
}
next_irq(opaque, irq, 1);
next_irq(opaque, irq, 0);
}
static void nextscsi_read(void *opaque, uint8_t *buf, int len)
{
DPRINTF("SCSI READ: %x\n", len);
abort();
}
static void nextscsi_write(void *opaque, uint8_t *buf, int size)
{
DPRINTF("SCSI WRITE: %i\n", size);
nextdma_write(opaque, buf, size, NEXTDMA_SCSI);
}
static void next_scsi_csr_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
NeXTSCSI *s = NEXT_SCSI(opaque);
NeXTPC *pc = NEXT_PC(container_of(s, NeXTPC, next_scsi));
switch (addr) {
case 0:
if (val & SCSICSR_FIFOFL) {
DPRINTF("SCSICSR FIFO Flush\n");
/* will have to add another irq to the esp if this is needed */
/* esp_puflush_fifo(esp_g); */
}
if (val & SCSICSR_ENABLE) {
DPRINTF("SCSICSR Enable\n");
/*
* qemu_irq_raise(s->scsi_dma);
* s->scsi_csr_1 = 0xc0;
* s->scsi_csr_1 |= 0x1;
* qemu_irq_pulse(s->scsi_dma);
*/
}
/*
* else
* s->scsi_csr_1 &= ~SCSICSR_ENABLE;
*/
if (val & SCSICSR_RESET) {
DPRINTF("SCSICSR Reset\n");
/* I think this should set DMADIR. CPUDMA and INTMASK to 0 */
qemu_irq_raise(pc->scsi_reset);
s->scsi_csr_1 &= ~(SCSICSR_INTMASK | 0x80 | 0x1);
qemu_irq_lower(pc->scsi_reset);
}
if (val & SCSICSR_DMADIR) {
DPRINTF("SCSICSR DMAdir\n");
}
if (val & SCSICSR_CPUDMA) {
DPRINTF("SCSICSR CPUDMA\n");
/* qemu_irq_raise(s->scsi_dma); */
pc->int_status |= 0x4000000;
} else {
/* fprintf(stderr,"SCSICSR CPUDMA disabled\n"); */
pc->int_status &= ~(0x4000000);
/* qemu_irq_lower(s->scsi_dma); */
}
if (val & SCSICSR_INTMASK) {
DPRINTF("SCSICSR INTMASK\n");
/*
* int_mask &= ~0x1000;
* s->scsi_csr_1 |= val;
* s->scsi_csr_1 &= ~SCSICSR_INTMASK;
* if (s->scsi_queued) {
* s->scsi_queued = 0;
* next_irq(s, NEXT_SCSI_I, level);
* }
*/
} else {
/* int_mask |= 0x1000; */
}
if (val & 0x80) {
/* int_mask |= 0x1000; */
/* s->scsi_csr_1 |= 0x80; */
}
DPRINTF("SCSICSR1 Write: %"PRIx64 "\n", val);
s->scsi_csr_1 = val;
break;
case 1:
DPRINTF("SCSICSR2 Write: %"PRIx64 "\n", val);
s->scsi_csr_2 = val;
break;
default:
g_assert_not_reached();
}
}
static uint64_t next_scsi_csr_read(void *opaque, hwaddr addr, unsigned size)
{
NeXTSCSI *s = NEXT_SCSI(opaque);
uint64_t val;
switch (addr) {
case 0:
DPRINTF("SCSI 4020 STATUS READ %X\n", s->scsi_csr_1);
val = s->scsi_csr_1;
break;
case 1:
DPRINTF("SCSI 4021 STATUS READ %X\n", s->scsi_csr_2);
val = s->scsi_csr_2;
break;
default:
g_assert_not_reached();
}
return val;
}
static const MemoryRegionOps next_scsi_csr_ops = {
.read = next_scsi_csr_read,
.write = next_scsi_csr_write,
.valid.min_access_size = 1,
.valid.max_access_size = 1,
.endianness = DEVICE_BIG_ENDIAN,
};
static void next_scsi_init(Object *obj)
{
NeXTSCSI *s = NEXT_SCSI(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
object_initialize_child(obj, "esp", &s->sysbus_esp, TYPE_SYSBUS_ESP);
memory_region_init_io(&s->scsi_csr_mem, obj, &next_scsi_csr_ops,
s, "csrs", 2);
memory_region_init(&s->scsi_mem, obj, "next.scsi", 0x40);
sysbus_init_mmio(sbd, &s->scsi_mem);
}
static void next_scsi_realize(DeviceState *dev, Error **errp)
{
NeXTSCSI *s = NEXT_SCSI(dev);
SysBusESPState *sysbus_esp;
SysBusDevice *sbd;
ESPState *esp;
NeXTPC *pcdev;
pcdev = NEXT_PC(container_of(s, NeXTPC, next_scsi));
/* ESP */
sysbus_esp = SYSBUS_ESP(&s->sysbus_esp);
esp = &sysbus_esp->esp;
esp->dma_memory_read = nextscsi_read;
esp->dma_memory_write = nextscsi_write;
esp->dma_opaque = pcdev;
sysbus_esp->it_shift = 0;
esp->dma_enabled = 1;
sbd = SYS_BUS_DEVICE(sysbus_esp);
if (!sysbus_realize(sbd, errp)) {
return;
}
memory_region_add_subregion(&s->scsi_mem, 0x0,
sysbus_mmio_get_region(sbd, 0));
/* SCSI CSRs */
memory_region_add_subregion(&s->scsi_mem, 0x20, &s->scsi_csr_mem);
scsi_bus_legacy_handle_cmdline(&s->sysbus_esp.esp.bus);
}
static const VMStateDescription next_scsi_vmstate = {
.name = "next-scsi",
.version_id = 0,
.minimum_version_id = 0,
.fields = (const VMStateField[]) {
VMSTATE_UINT8(scsi_csr_1, NeXTSCSI),
VMSTATE_UINT8(scsi_csr_2, NeXTSCSI),
VMSTATE_END_OF_LIST()
},
};
static void next_scsi_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "NeXT SCSI Controller";
dc->realize = next_scsi_realize;
dc->vmsd = &next_scsi_vmstate;
}
static const TypeInfo next_scsi_info = {
.name = TYPE_NEXT_SCSI,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = next_scsi_init,
.instance_size = sizeof(NeXTSCSI),
.class_init = next_scsi_class_init,
};
static void next_floppy_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
switch (addr) {
case 0:
DPRINTF("FDCSR Write: %"PRIx64 "\n", val);
if (val == 0x0) {
/* qemu_irq_raise(s->fd_irq[0]); */
}
break;
default:
g_assert_not_reached();
}
}
static uint64_t next_floppy_read(void *opaque, hwaddr addr, unsigned size)
{
uint64_t val;
switch (addr) {
case 0:
DPRINTF("FD read @ %x\n", (unsigned int)addr);
val = 0x40 | 0x04 | 0x2 | 0x1;
break;
default:
g_assert_not_reached();
}
return val;
}
static const MemoryRegionOps next_floppy_ops = {
.read = next_floppy_read,
.write = next_floppy_write,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_BIG_ENDIAN,
};
static void next_timer_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
switch (addr) {
case 0 ... 3:
/* Hardware timer latch - not implemented yet */
break;
default:
g_assert_not_reached();
}
}
static uint64_t next_timer_read(void *opaque, hwaddr addr, unsigned size)
{
uint64_t val;
switch (addr) {
case 0 ... 3:
/*
* These 4 registers are the hardware timer, not sure which register
* is the latch instead of data, but no problems so far.
*
* Hack: We need to have the LSB change consistently to make it work
*/
val = extract32(clock(), (4 - addr - size) << 3,
size << 3);
break;
default:
g_assert_not_reached();
}
return val;
}
static const MemoryRegionOps next_timer_ops = {
.read = next_timer_read,
.write = next_timer_write,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_BIG_ENDIAN,
};
static void next_dummy_en_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
/* Do nothing */
return;
}
static uint64_t next_dummy_en_read(void *opaque, hwaddr addr, unsigned size)
{
uint64_t val;
switch (addr) {
case 0:
/* For now return dummy byte to allow the Ethernet test to timeout */
val = 0xff;
break;
default:
val = 0;
}
return val;
}
static const MemoryRegionOps next_dummy_en_ops = {
.read = next_dummy_en_read,
.write = next_dummy_en_write,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_BIG_ENDIAN,
};
static bool next_rtc_cmd_is_write(uint8_t cmd)
{
return (cmd >= 0x80 && cmd <= 0x9f) ||
(cmd == 0xb1);
}
static void next_rtc_data_in_irq(void *opaque, int n, int level)
{
NeXTRTC *rtc = NEXT_RTC(opaque);
if (rtc->phase < 8) {
rtc->command = (rtc->command << 1) | level;
if (rtc->phase == 7 && !next_rtc_cmd_is_write(rtc->command)) {
if (rtc->command <= 0x1f) {
/* RAM registers */
rtc->retval = rtc->ram[rtc->command];
}
if ((rtc->command >= 0x20) && (rtc->command <= 0x2f)) {
/* RTC */
time_t time_h = time(NULL);
struct tm *info = localtime(&time_h);
rtc->retval = 0;
switch (rtc->command) {
case 0x20:
rtc->retval = SCR2_TOBCD(info->tm_sec);
break;
case 0x21:
rtc->retval = SCR2_TOBCD(info->tm_min);
break;
case 0x22:
rtc->retval = SCR2_TOBCD(info->tm_hour);
break;
case 0x24:
rtc->retval = SCR2_TOBCD(info->tm_mday);
break;
case 0x25:
rtc->retval = SCR2_TOBCD((info->tm_mon + 1));
break;
case 0x26:
rtc->retval = SCR2_TOBCD((info->tm_year - 100));
break;
}
}
if (rtc->command == 0x30) {
/* read the status 0x30 */
rtc->retval = rtc->status;
}
if (rtc->command == 0x31) {
/* read the control 0x31 */
rtc->retval = rtc->control;
}
}
}
if (rtc->phase >= 8 && rtc->phase < 16) {
if (next_rtc_cmd_is_write(rtc->command)) {
/* Shift in value to write */
rtc->value = (rtc->value << 1) | level;
} else {
/* Shift out value to read */
if (rtc->retval & (0x80 >> (rtc->phase - 8))) {
qemu_irq_raise(rtc->data_out_irq);
} else {
qemu_irq_lower(rtc->data_out_irq);
}
}
}
rtc->phase++;
if (rtc->phase == 16 && next_rtc_cmd_is_write(rtc->command)) {
if (rtc->command >= 0x80 && rtc->command <= 0x9f) {
/* RAM registers */
rtc->ram[rtc->command - 0x80] = rtc->value;
}
if (rtc->command == 0xb1) {
/* write to 0x30 register */
if (rtc->value & 0x04) {
/* clear FTU */
rtc->status = rtc->status & (~0x18);
qemu_irq_lower(rtc->power_irq);
}
}
}
}
static void next_rtc_cmd_reset_irq(void *opaque, int n, int level)
{
NeXTRTC *rtc = NEXT_RTC(opaque);
if (level) {
rtc->phase = 0;
rtc->command = 0;
rtc->value = 0;
}
}
static void next_rtc_reset_hold(Object *obj, ResetType type)
{
NeXTRTC *rtc = NEXT_RTC(obj);
rtc->status = 0x90;
/* Load RTC RAM - TODO: provide possibility to load contents from file */
memcpy(rtc->ram, rtc_ram2, 32);
}
static void next_rtc_init(Object *obj)
{
NeXTRTC *rtc = NEXT_RTC(obj);
qdev_init_gpio_in_named(DEVICE(obj), next_rtc_data_in_irq,
"rtc-data-in", 1);
qdev_init_gpio_out_named(DEVICE(obj), &rtc->data_out_irq,
"rtc-data-out", 1);
qdev_init_gpio_in_named(DEVICE(obj), next_rtc_cmd_reset_irq,
"rtc-cmd-reset", 1);
qdev_init_gpio_out_named(DEVICE(obj), &rtc->power_irq,
"rtc-power-out", 1);
}
static const VMStateDescription next_rtc_vmstate = {
.name = "next-rtc",
.version_id = 3,
.minimum_version_id = 3,
.fields = (const VMStateField[]) {
VMSTATE_INT8(phase, NeXTRTC),
VMSTATE_UINT8_ARRAY(ram, NeXTRTC, 32),
VMSTATE_UINT8(command, NeXTRTC),
VMSTATE_UINT8(value, NeXTRTC),
VMSTATE_UINT8(status, NeXTRTC),
VMSTATE_UINT8(control, NeXTRTC),
VMSTATE_UINT8(retval, NeXTRTC),
VMSTATE_END_OF_LIST()
},
};
static void next_rtc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
dc->desc = "NeXT RTC";
dc->vmsd = &next_rtc_vmstate;
rc->phases.hold = next_rtc_reset_hold;
}
static const TypeInfo next_rtc_info = {
.name = TYPE_NEXT_RTC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = next_rtc_init,
.instance_size = sizeof(NeXTRTC),
.class_init = next_rtc_class_init,
};
static void next_pc_rtc_data_in_irq(void *opaque, int n, int level)
{
NeXTPC *s = NEXT_PC(opaque);
uint8_t scr2_2 = extract32(s->scr2, 8, 8);
if (level) {
scr2_2 |= SCR2_RTDATA;
} else {
scr2_2 &= ~SCR2_RTDATA;
}
s->scr2 = deposit32(s->scr2, 8, 8, scr2_2);
}
static void next_pc_reset_hold(Object *obj, ResetType type)
{
NeXTPC *s = NEXT_PC(obj);
/* Set internal registers to initial values */
/* 0x0000XX00 << vital bits */
s->scr1 = 0x00011102;
s->scr2 = 0x00ff0c80;
s->old_scr2 = s->scr2;
}
static void next_pc_realize(DeviceState *dev, Error **errp)
{
NeXTPC *s = NEXT_PC(dev);
SysBusDevice *sbd;
DeviceState *d;
/* SCSI */
sbd = SYS_BUS_DEVICE(&s->next_scsi);
if (!sysbus_realize(sbd, errp)) {
return;
}
d = DEVICE(object_resolve_path_component(OBJECT(&s->next_scsi), "esp"));
sysbus_connect_irq(SYS_BUS_DEVICE(d), 0,
qdev_get_gpio_in(DEVICE(s), NEXT_SCSI_I));
s->scsi_reset = qdev_get_gpio_in(d, 0);
s->scsi_dma = qdev_get_gpio_in(d, 1);
/* ESCC */
d = DEVICE(&s->escc);
qdev_prop_set_uint32(d, "disabled", 0);
qdev_prop_set_uint32(d, "frequency", 9600 * 384);
qdev_prop_set_uint32(d, "it_shift", 0);
qdev_prop_set_bit(d, "bit_swap", true);
qdev_prop_set_chr(d, "chrB", serial_hd(1));
qdev_prop_set_chr(d, "chrA", serial_hd(0));
qdev_prop_set_uint32(d, "chnBtype", escc_serial);
qdev_prop_set_uint32(d, "chnAtype", escc_serial);
sbd = SYS_BUS_DEVICE(d);
if (!sysbus_realize(sbd, errp)) {
return;
}
sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(dev, NEXT_SCC_I));
sysbus_connect_irq(sbd, 1, qdev_get_gpio_in(dev, NEXT_SCC_DMA_I));
/* RTC */
d = DEVICE(&s->rtc);
if (!sysbus_realize(SYS_BUS_DEVICE(d), errp)) {
return;
}
/* Data from NeXTPC to RTC */
qdev_connect_gpio_out_named(dev, "rtc-data-out", 0,
qdev_get_gpio_in_named(d, "rtc-data-in", 0));
/* Data from RTC to NeXTPC */
qdev_connect_gpio_out_named(d, "rtc-data-out", 0,
qdev_get_gpio_in_named(dev,
"rtc-data-in", 0));
qdev_connect_gpio_out_named(dev, "rtc-cmd-reset", 0,
qdev_get_gpio_in_named(d, "rtc-cmd-reset", 0));
qdev_connect_gpio_out_named(d, "rtc-power-out", 0,
qdev_get_gpio_in(dev, NEXT_PWR_I));
}
static void next_pc_init(Object *obj)
{
NeXTPC *s = NEXT_PC(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
qdev_init_gpio_in(DEVICE(obj), next_irq, NEXT_NUM_IRQS);
memory_region_init_io(&s->mmiomem, OBJECT(s), &next_mmio_ops, s,
"next.mmio", 0x9000);
sysbus_init_mmio(sbd, &s->mmiomem);
memory_region_init_io(&s->dummyen_mem, OBJECT(s), &next_dummy_en_ops, s,
"next.en", 0x20);
sysbus_init_mmio(sbd, &s->dummyen_mem);
object_initialize_child(obj, "next-scsi", &s->next_scsi, TYPE_NEXT_SCSI);
sysbus_init_mmio(sbd,
sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->next_scsi), 0));
memory_region_init_io(&s->floppy_mem, OBJECT(s), &next_floppy_ops, s,
"next.floppy", 4);
sysbus_init_mmio(sbd, &s->floppy_mem);
object_initialize_child(obj, "escc", &s->escc, TYPE_ESCC);
sysbus_init_mmio(sbd,
sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->escc), 0));
memory_region_init_io(&s->timer_mem, OBJECT(s), &next_timer_ops, s,
"next.timer", 4);
sysbus_init_mmio(sbd, &s->timer_mem);
object_initialize_child(obj, "rtc", &s->rtc, TYPE_NEXT_RTC);
qdev_init_gpio_in_named(DEVICE(obj), next_pc_rtc_data_in_irq,
"rtc-data-in", 1);
qdev_init_gpio_out_named(DEVICE(obj), &s->rtc_data_irq,
"rtc-data-out", 1);
qdev_init_gpio_out_named(DEVICE(obj), &s->rtc_cmd_reset_irq,
"rtc-cmd-reset", 1);
}
/*
* If the m68k CPU implemented its inbound irq lines as GPIO lines
* rather than via the m68k_set_irq_level() function we would not need
* this cpu link property and could instead provide outbound IRQ lines
* that the board could wire up to the CPU.
*/
static const Property next_pc_properties[] = {
DEFINE_PROP_LINK("cpu", NeXTPC, cpu, TYPE_M68K_CPU, M68kCPU *),
};
static const VMStateDescription next_pc_vmstate = {
.name = "next-pc",
.version_id = 4,
.minimum_version_id = 4,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(scr1, NeXTPC),
VMSTATE_UINT32(scr2, NeXTPC),
VMSTATE_UINT32(old_scr2, NeXTPC),
VMSTATE_UINT32(int_mask, NeXTPC),
VMSTATE_UINT32(int_status, NeXTPC),
VMSTATE_UINT32(led, NeXTPC),
VMSTATE_END_OF_LIST()
},
};
static void next_pc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
dc->desc = "NeXT Peripheral Controller";
dc->realize = next_pc_realize;
device_class_set_props(dc, next_pc_properties);
dc->vmsd = &next_pc_vmstate;
rc->phases.hold = next_pc_reset_hold;
}
static const TypeInfo next_pc_info = {
.name = TYPE_NEXT_PC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = next_pc_init,
.instance_size = sizeof(NeXTPC),
.class_init = next_pc_class_init,
};
static void next_cube_init(MachineState *machine)
{
NeXTState *m = NEXT_MACHINE(machine);
M68kCPU *cpu;
CPUM68KState *env;
MemoryRegion *sysmem = get_system_memory();
const char *bios_name = machine->firmware ?: ROM_FILE;
DeviceState *pcdev;
/* Initialize the cpu core */
cpu = M68K_CPU(cpu_create(machine->cpu_type));
if (!cpu) {
error_report("Unable to find m68k CPU definition");
exit(1);
}
env = &cpu->env;
/* Initialize CPU registers. */
env->vbr = 0;
env->sr = 0x2700;
/* Peripheral Controller */
pcdev = qdev_new(TYPE_NEXT_PC);
object_property_set_link(OBJECT(pcdev), "cpu", OBJECT(cpu), &error_abort);
sysbus_realize_and_unref(SYS_BUS_DEVICE(pcdev), &error_fatal);
/* 64MB RAM starting at 0x04000000 */
memory_region_add_subregion(sysmem, 0x04000000, machine->ram);
/* Framebuffer */
sysbus_create_simple(TYPE_NEXTFB, 0x0B000000, NULL);
/* MMIO */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 0, 0x02005000);
/* BMAP IO - acts as a catch-all for now */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 1, 0x02100000);
/* en network (dummy) */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 1, 0x02106000);
/* unknown: Brightness control register? */
empty_slot_init("next.unknown.0", 0x02110000, 0x10);
/* unknown: Magneto-Optical drive controller? */
empty_slot_init("next.unknown.1", 0x02112000, 0x10);
/* SCSI */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 2, 0x02114000);
/* Floppy */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 3, 0x02114108);
/* ESCC */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 4, 0x02118000);
/* unknown: Serial clock configuration register? */
empty_slot_init("next.unknown.2", 0x02118004, 0x10);
/* Timer */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 5, 0x0211a000);
/* BMAP memory */
memory_region_init_ram_flags_nomigrate(&m->bmapm1, NULL, "next.bmapmem",
64, RAM_SHARED, &error_fatal);
memory_region_add_subregion(sysmem, 0x020c0000, &m->bmapm1);
/* The Rev_2.5_v66.bin firmware accesses it at 0x820c0020, too */
memory_region_init_alias(&m->bmapm2, NULL, "next.bmapmem2", &m->bmapm1,
0x0, 64);
memory_region_add_subregion(sysmem, 0x820c0000, &m->bmapm2);
/* KBD */
sysbus_create_simple(TYPE_NEXTKBD, 0x0200e000, NULL);
/* Load ROM here */
memory_region_init_rom(&m->rom, NULL, "next.rom", 0x20000, &error_fatal);
memory_region_add_subregion(sysmem, 0x01000000, &m->rom);
memory_region_init_alias(&m->rom2, NULL, "next.rom2", &m->rom, 0x0,
0x20000);
memory_region_add_subregion(sysmem, 0x0, &m->rom2);
if (load_image_targphys(bios_name, 0x01000000, 0x20000) < 8) {
if (!qtest_enabled()) {
error_report("Failed to load firmware '%s'.", bios_name);
}
} else {
uint8_t *ptr;
/* Initial PC is always at offset 4 in firmware binaries */
ptr = rom_ptr(0x01000004, 4);
g_assert(ptr != NULL);
env->pc = ldl_be_p(ptr);
if (env->pc >= 0x01020000) {
error_report("'%s' does not seem to be a valid firmware image.",
bios_name);
exit(1);
}
}
/* DMA */
memory_region_init_io(&m->dmamem, NULL, &next_dma_ops, machine,
"next.dma", 0x5000);
memory_region_add_subregion(sysmem, 0x02000000, &m->dmamem);
}
static void next_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "NeXT Cube";
mc->init = next_cube_init;
mc->block_default_type = IF_SCSI;
mc->default_ram_size = RAM_SIZE;
mc->default_ram_id = "next.ram";
mc->default_cpu_type = M68K_CPU_TYPE_NAME("m68040");
mc->no_cdrom = true;
}
static const TypeInfo next_typeinfo = {
.name = TYPE_NEXT_MACHINE,
.parent = TYPE_MACHINE,
.class_init = next_machine_class_init,
.instance_size = sizeof(NeXTState),
};
static void next_register_type(void)
{
type_register_static(&next_typeinfo);
type_register_static(&next_pc_info);
type_register_static(&next_scsi_info);
type_register_static(&next_rtc_info);
}
type_init(next_register_type)
|