1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
|
/*
* IMX6UL Clock Control Module
*
* Copyright (c) 2018 Jean-Christophe Dubois <jcd@tribudubois.net>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* To get the timer frequencies right, we need to emulate at least part of
* the CCM.
*/
#include "qemu/osdep.h"
#include "hw/registerfields.h"
#include "migration/vmstate.h"
#include "hw/misc/imx6ul_ccm.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "trace.h"
static const uint32_t ccm_mask[CCM_MAX] = {
[CCM_CCR] = 0xf01fef80,
[CCM_CCDR] = 0xfffeffff,
[CCM_CSR] = 0xffffffff,
[CCM_CCSR] = 0xfffffef2,
[CCM_CACRR] = 0xfffffff8,
[CCM_CBCDR] = 0xc1f8e000,
[CCM_CBCMR] = 0xfc03cfff,
[CCM_CSCMR1] = 0x80700000,
[CCM_CSCMR2] = 0xe01ff003,
[CCM_CSCDR1] = 0xfe00c780,
[CCM_CS1CDR] = 0xfe00fe00,
[CCM_CS2CDR] = 0xf8007000,
[CCM_CDCDR] = 0xf00fffff,
[CCM_CHSCCDR] = 0xfffc01ff,
[CCM_CSCDR2] = 0xfe0001ff,
[CCM_CSCDR3] = 0xffffc1ff,
[CCM_CDHIPR] = 0xffffffff,
[CCM_CTOR] = 0x00000000,
[CCM_CLPCR] = 0xf39ff01c,
[CCM_CISR] = 0xfb85ffbe,
[CCM_CIMR] = 0xfb85ffbf,
[CCM_CCOSR] = 0xfe00fe00,
[CCM_CGPR] = 0xfffc3fea,
[CCM_CCGR0] = 0x00000000,
[CCM_CCGR1] = 0x00000000,
[CCM_CCGR2] = 0x00000000,
[CCM_CCGR3] = 0x00000000,
[CCM_CCGR4] = 0x00000000,
[CCM_CCGR5] = 0x00000000,
[CCM_CCGR6] = 0x00000000,
[CCM_CMEOR] = 0xafffff1f,
};
static const uint32_t analog_mask[CCM_ANALOG_MAX] = {
[CCM_ANALOG_PLL_ARM] = 0xfff60f80,
[CCM_ANALOG_PLL_USB1] = 0xfffe0fbc,
[CCM_ANALOG_PLL_USB2] = 0xfffe0fbc,
[CCM_ANALOG_PLL_SYS] = 0xfffa0ffe,
[CCM_ANALOG_PLL_SYS_SS] = 0x00000000,
[CCM_ANALOG_PLL_SYS_NUM] = 0xc0000000,
[CCM_ANALOG_PLL_SYS_DENOM] = 0xc0000000,
[CCM_ANALOG_PLL_AUDIO] = 0xffe20f80,
[CCM_ANALOG_PLL_AUDIO_NUM] = 0xc0000000,
[CCM_ANALOG_PLL_AUDIO_DENOM] = 0xc0000000,
[CCM_ANALOG_PLL_VIDEO] = 0xffe20f80,
[CCM_ANALOG_PLL_VIDEO_NUM] = 0xc0000000,
[CCM_ANALOG_PLL_VIDEO_DENOM] = 0xc0000000,
[CCM_ANALOG_PLL_ENET] = 0xffc20ff0,
[CCM_ANALOG_PFD_480] = 0x40404040,
[CCM_ANALOG_PFD_528] = 0x40404040,
[PMU_MISC0] = 0x01fe8306,
[PMU_MISC1] = 0x07fcede0,
[PMU_MISC2] = 0x005f5f5f,
};
static const char *imx6ul_ccm_reg_name(uint32_t reg)
{
static char unknown[20];
switch (reg) {
case CCM_CCR:
return "CCR";
case CCM_CCDR:
return "CCDR";
case CCM_CSR:
return "CSR";
case CCM_CCSR:
return "CCSR";
case CCM_CACRR:
return "CACRR";
case CCM_CBCDR:
return "CBCDR";
case CCM_CBCMR:
return "CBCMR";
case CCM_CSCMR1:
return "CSCMR1";
case CCM_CSCMR2:
return "CSCMR2";
case CCM_CSCDR1:
return "CSCDR1";
case CCM_CS1CDR:
return "CS1CDR";
case CCM_CS2CDR:
return "CS2CDR";
case CCM_CDCDR:
return "CDCDR";
case CCM_CHSCCDR:
return "CHSCCDR";
case CCM_CSCDR2:
return "CSCDR2";
case CCM_CSCDR3:
return "CSCDR3";
case CCM_CDHIPR:
return "CDHIPR";
case CCM_CTOR:
return "CTOR";
case CCM_CLPCR:
return "CLPCR";
case CCM_CISR:
return "CISR";
case CCM_CIMR:
return "CIMR";
case CCM_CCOSR:
return "CCOSR";
case CCM_CGPR:
return "CGPR";
case CCM_CCGR0:
return "CCGR0";
case CCM_CCGR1:
return "CCGR1";
case CCM_CCGR2:
return "CCGR2";
case CCM_CCGR3:
return "CCGR3";
case CCM_CCGR4:
return "CCGR4";
case CCM_CCGR5:
return "CCGR5";
case CCM_CCGR6:
return "CCGR6";
case CCM_CMEOR:
return "CMEOR";
default:
snprintf(unknown, sizeof(unknown), "%u ?", reg);
return unknown;
}
}
static const char *imx6ul_analog_reg_name(uint32_t reg)
{
static char unknown[20];
switch (reg) {
case CCM_ANALOG_PLL_ARM:
return "PLL_ARM";
case CCM_ANALOG_PLL_ARM_SET:
return "PLL_ARM_SET";
case CCM_ANALOG_PLL_ARM_CLR:
return "PLL_ARM_CLR";
case CCM_ANALOG_PLL_ARM_TOG:
return "PLL_ARM_TOG";
case CCM_ANALOG_PLL_USB1:
return "PLL_USB1";
case CCM_ANALOG_PLL_USB1_SET:
return "PLL_USB1_SET";
case CCM_ANALOG_PLL_USB1_CLR:
return "PLL_USB1_CLR";
case CCM_ANALOG_PLL_USB1_TOG:
return "PLL_USB1_TOG";
case CCM_ANALOG_PLL_USB2:
return "PLL_USB2";
case CCM_ANALOG_PLL_USB2_SET:
return "PLL_USB2_SET";
case CCM_ANALOG_PLL_USB2_CLR:
return "PLL_USB2_CLR";
case CCM_ANALOG_PLL_USB2_TOG:
return "PLL_USB2_TOG";
case CCM_ANALOG_PLL_SYS:
return "PLL_SYS";
case CCM_ANALOG_PLL_SYS_SET:
return "PLL_SYS_SET";
case CCM_ANALOG_PLL_SYS_CLR:
return "PLL_SYS_CLR";
case CCM_ANALOG_PLL_SYS_TOG:
return "PLL_SYS_TOG";
case CCM_ANALOG_PLL_SYS_SS:
return "PLL_SYS_SS";
case CCM_ANALOG_PLL_SYS_NUM:
return "PLL_SYS_NUM";
case CCM_ANALOG_PLL_SYS_DENOM:
return "PLL_SYS_DENOM";
case CCM_ANALOG_PLL_AUDIO:
return "PLL_AUDIO";
case CCM_ANALOG_PLL_AUDIO_SET:
return "PLL_AUDIO_SET";
case CCM_ANALOG_PLL_AUDIO_CLR:
return "PLL_AUDIO_CLR";
case CCM_ANALOG_PLL_AUDIO_TOG:
return "PLL_AUDIO_TOG";
case CCM_ANALOG_PLL_AUDIO_NUM:
return "PLL_AUDIO_NUM";
case CCM_ANALOG_PLL_AUDIO_DENOM:
return "PLL_AUDIO_DENOM";
case CCM_ANALOG_PLL_VIDEO:
return "PLL_VIDEO";
case CCM_ANALOG_PLL_VIDEO_SET:
return "PLL_VIDEO_SET";
case CCM_ANALOG_PLL_VIDEO_CLR:
return "PLL_VIDEO_CLR";
case CCM_ANALOG_PLL_VIDEO_TOG:
return "PLL_VIDEO_TOG";
case CCM_ANALOG_PLL_VIDEO_NUM:
return "PLL_VIDEO_NUM";
case CCM_ANALOG_PLL_VIDEO_DENOM:
return "PLL_VIDEO_DENOM";
case CCM_ANALOG_PLL_ENET:
return "PLL_ENET";
case CCM_ANALOG_PLL_ENET_SET:
return "PLL_ENET_SET";
case CCM_ANALOG_PLL_ENET_CLR:
return "PLL_ENET_CLR";
case CCM_ANALOG_PLL_ENET_TOG:
return "PLL_ENET_TOG";
case CCM_ANALOG_PFD_480:
return "PFD_480";
case CCM_ANALOG_PFD_480_SET:
return "PFD_480_SET";
case CCM_ANALOG_PFD_480_CLR:
return "PFD_480_CLR";
case CCM_ANALOG_PFD_480_TOG:
return "PFD_480_TOG";
case CCM_ANALOG_PFD_528:
return "PFD_528";
case CCM_ANALOG_PFD_528_SET:
return "PFD_528_SET";
case CCM_ANALOG_PFD_528_CLR:
return "PFD_528_CLR";
case CCM_ANALOG_PFD_528_TOG:
return "PFD_528_TOG";
case CCM_ANALOG_MISC0:
return "MISC0";
case CCM_ANALOG_MISC0_SET:
return "MISC0_SET";
case CCM_ANALOG_MISC0_CLR:
return "MISC0_CLR";
case CCM_ANALOG_MISC0_TOG:
return "MISC0_TOG";
case CCM_ANALOG_MISC2:
return "MISC2";
case CCM_ANALOG_MISC2_SET:
return "MISC2_SET";
case CCM_ANALOG_MISC2_CLR:
return "MISC2_CLR";
case CCM_ANALOG_MISC2_TOG:
return "MISC2_TOG";
case PMU_REG_1P1:
return "PMU_REG_1P1";
case PMU_REG_3P0:
return "PMU_REG_3P0";
case PMU_REG_2P5:
return "PMU_REG_2P5";
case PMU_REG_CORE:
return "PMU_REG_CORE";
case PMU_MISC1:
return "PMU_MISC1";
case PMU_MISC1_SET:
return "PMU_MISC1_SET";
case PMU_MISC1_CLR:
return "PMU_MISC1_CLR";
case PMU_MISC1_TOG:
return "PMU_MISC1_TOG";
case USB_ANALOG_DIGPROG:
return "USB_ANALOG_DIGPROG";
default:
snprintf(unknown, sizeof(unknown), "%u ?", reg);
return unknown;
}
}
#define CKIH_FREQ 24000000 /* 24MHz crystal input */
static const VMStateDescription vmstate_imx6ul_ccm = {
.name = TYPE_IMX6UL_CCM,
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_UINT32_ARRAY(ccm, IMX6ULCCMState, CCM_MAX),
VMSTATE_UINT32_ARRAY(analog, IMX6ULCCMState, CCM_ANALOG_MAX),
VMSTATE_END_OF_LIST()
},
};
static uint64_t imx6ul_analog_get_osc_clk(IMX6ULCCMState *dev)
{
uint64_t freq = CKIH_FREQ;
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_analog_get_pll2_clk(IMX6ULCCMState *dev)
{
uint64_t freq = imx6ul_analog_get_osc_clk(dev);
if (FIELD_EX32(dev->analog[CCM_ANALOG_PLL_SYS],
ANALOG_PLL_SYS, DIV_SELECT)) {
freq *= 22;
} else {
freq *= 20;
}
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_analog_get_pll3_clk(IMX6ULCCMState *dev)
{
uint64_t freq = imx6ul_analog_get_osc_clk(dev) * 20;
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_analog_get_pll2_pfd0_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
freq = imx6ul_analog_get_pll2_clk(dev) * 18
/ FIELD_EX32(dev->analog[CCM_ANALOG_PFD_528],
ANALOG_PFD_528, PFD0_FRAC);
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_analog_get_pll2_pfd2_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
freq = imx6ul_analog_get_pll2_clk(dev) * 18
/ FIELD_EX32(dev->analog[CCM_ANALOG_PFD_528],
ANALOG_PFD_528, PFD2_FRAC);
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_analog_pll2_bypass_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_ccm_get_periph_clk2_sel_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
switch (FIELD_EX32(dev->ccm[CCM_CBCMR], CBCMR, PERIPH_CLK2_SEL)) {
case 0:
freq = imx6ul_analog_get_pll3_clk(dev);
break;
case 1:
freq = imx6ul_analog_get_osc_clk(dev);
break;
case 2:
freq = imx6ul_analog_pll2_bypass_clk(dev);
break;
case 3:
/* We should never get there as 3 is a reserved value */
qemu_log_mask(LOG_GUEST_ERROR,
"[%s]%s: unsupported PERIPH_CLK2_SEL value 3\n",
TYPE_IMX6UL_CCM, __func__);
/* freq is set to 0 as we don't know what it should be */
break;
default:
g_assert_not_reached();
}
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_ccm_get_periph_clk_sel_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
switch (FIELD_EX32(dev->ccm[CCM_CBCMR], CBCMR, PRE_PERIPH_CLK_SEL)) {
case 0:
freq = imx6ul_analog_get_pll2_clk(dev);
break;
case 1:
freq = imx6ul_analog_get_pll2_pfd2_clk(dev);
break;
case 2:
freq = imx6ul_analog_get_pll2_pfd0_clk(dev);
break;
case 3:
freq = imx6ul_analog_get_pll2_pfd2_clk(dev) / 2;
break;
default:
g_assert_not_reached();
}
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_ccm_get_periph_clk2_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
freq = imx6ul_ccm_get_periph_clk2_sel_clk(dev)
/ (1 + FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, PERIPH_CLK2_PODF));
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_ccm_get_periph_sel_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
switch (FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, PERIPH_CLK_SEL)) {
case 0:
freq = imx6ul_ccm_get_periph_clk_sel_clk(dev);
break;
case 1:
freq = imx6ul_ccm_get_periph_clk2_clk(dev);
break;
default:
g_assert_not_reached();
}
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_ccm_get_ahb_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
freq = imx6ul_ccm_get_periph_sel_clk(dev)
/ (1 + FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, AHB_PODF));
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_ccm_get_ipg_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
freq = imx6ul_ccm_get_ahb_clk(dev)
/ (1 + FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, IPG_PODF));
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_ccm_get_per_sel_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
switch (FIELD_EX32(dev->ccm[CCM_CSCMR1], CSCMR1, PERCLK_CLK_SEL)) {
case 0:
freq = imx6ul_ccm_get_ipg_clk(dev);
break;
case 1:
freq = imx6ul_analog_get_osc_clk(dev);
break;
default:
g_assert_not_reached();
}
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_ccm_get_per_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
freq = imx6ul_ccm_get_per_sel_clk(dev)
/ (1 + FIELD_EX32(dev->ccm[CCM_CSCMR1], CSCMR1, PERCLK_PODF));
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint32_t imx6ul_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
{
uint32_t freq = 0;
IMX6ULCCMState *s = IMX6UL_CCM(dev);
switch (clock) {
case CLK_NONE:
break;
case CLK_IPG:
freq = imx6ul_ccm_get_ipg_clk(s);
break;
case CLK_IPG_HIGH:
freq = imx6ul_ccm_get_per_clk(s);
break;
case CLK_32k:
freq = CKIL_FREQ;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
TYPE_IMX6UL_CCM, __func__, clock);
break;
}
trace_ccm_clock_freq(clock, freq);
return freq;
}
static void imx6ul_ccm_reset(DeviceState *dev)
{
IMX6ULCCMState *s = IMX6UL_CCM(dev);
trace_ccm_entry();
s->ccm[CCM_CCR] = 0x0401167F;
s->ccm[CCM_CCDR] = 0x00000000;
s->ccm[CCM_CSR] = 0x00000010;
s->ccm[CCM_CCSR] = 0x00000100;
s->ccm[CCM_CACRR] = 0x00000000;
s->ccm[CCM_CBCDR] = 0x00018D00;
s->ccm[CCM_CBCMR] = 0x24860324;
s->ccm[CCM_CSCMR1] = 0x04900080;
s->ccm[CCM_CSCMR2] = 0x03192F06;
s->ccm[CCM_CSCDR1] = 0x00490B00;
s->ccm[CCM_CS1CDR] = 0x0EC102C1;
s->ccm[CCM_CS2CDR] = 0x000336C1;
s->ccm[CCM_CDCDR] = 0x33F71F92;
s->ccm[CCM_CHSCCDR] = 0x000248A4;
s->ccm[CCM_CSCDR2] = 0x00029B48;
s->ccm[CCM_CSCDR3] = 0x00014841;
s->ccm[CCM_CDHIPR] = 0x00000000;
s->ccm[CCM_CTOR] = 0x00000000;
s->ccm[CCM_CLPCR] = 0x00000079;
s->ccm[CCM_CISR] = 0x00000000;
s->ccm[CCM_CIMR] = 0xFFFFFFFF;
s->ccm[CCM_CCOSR] = 0x000A0001;
s->ccm[CCM_CGPR] = 0x0000FE62;
s->ccm[CCM_CCGR0] = 0xFFFFFFFF;
s->ccm[CCM_CCGR1] = 0xFFFFFFFF;
s->ccm[CCM_CCGR2] = 0xFC3FFFFF;
s->ccm[CCM_CCGR3] = 0xFFFFFFFF;
s->ccm[CCM_CCGR4] = 0xFFFFFFFF;
s->ccm[CCM_CCGR5] = 0xFFFFFFFF;
s->ccm[CCM_CCGR6] = 0xFFFFFFFF;
s->ccm[CCM_CMEOR] = 0xFFFFFFFF;
s->analog[CCM_ANALOG_PLL_ARM] = 0x00013063;
s->analog[CCM_ANALOG_PLL_USB1] = 0x00012000;
s->analog[CCM_ANALOG_PLL_USB2] = 0x00012000;
s->analog[CCM_ANALOG_PLL_SYS] = 0x00013001;
s->analog[CCM_ANALOG_PLL_SYS_SS] = 0x00000000;
s->analog[CCM_ANALOG_PLL_SYS_NUM] = 0x00000000;
s->analog[CCM_ANALOG_PLL_SYS_DENOM] = 0x00000012;
s->analog[CCM_ANALOG_PLL_AUDIO] = 0x00011006;
s->analog[CCM_ANALOG_PLL_AUDIO_NUM] = 0x05F5E100;
s->analog[CCM_ANALOG_PLL_AUDIO_DENOM] = 0x2964619C;
s->analog[CCM_ANALOG_PLL_VIDEO] = 0x0001100C;
s->analog[CCM_ANALOG_PLL_VIDEO_NUM] = 0x05F5E100;
s->analog[CCM_ANALOG_PLL_VIDEO_DENOM] = 0x10A24447;
s->analog[CCM_ANALOG_PLL_ENET] = 0x00011001;
s->analog[CCM_ANALOG_PFD_480] = 0x1311100C;
s->analog[CCM_ANALOG_PFD_528] = 0x1018101B;
s->analog[PMU_REG_1P1] = 0x00001073;
s->analog[PMU_REG_3P0] = 0x00000F74;
s->analog[PMU_REG_2P5] = 0x00001073;
s->analog[PMU_REG_CORE] = 0x00482012;
s->analog[PMU_MISC0] = 0x04000000;
s->analog[PMU_MISC1] = 0x00000000;
s->analog[PMU_MISC2] = 0x00272727;
s->analog[PMU_LOWPWR_CTRL] = 0x00004009;
s->analog[USB_ANALOG_USB1_VBUS_DETECT] = 0x01000004;
s->analog[USB_ANALOG_USB1_CHRG_DETECT] = 0x00000000;
s->analog[USB_ANALOG_USB1_VBUS_DETECT_STAT] = 0x00000000;
s->analog[USB_ANALOG_USB1_CHRG_DETECT_STAT] = 0x00000000;
s->analog[USB_ANALOG_USB1_MISC] = 0x00000002;
s->analog[USB_ANALOG_USB2_VBUS_DETECT] = 0x01000004;
s->analog[USB_ANALOG_USB2_CHRG_DETECT] = 0x00000000;
s->analog[USB_ANALOG_USB2_MISC] = 0x00000002;
s->analog[USB_ANALOG_DIGPROG] = 0x00640000;
/* all PLLs need to be locked */
s->analog[CCM_ANALOG_PLL_ARM] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_USB1] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_USB2] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_SYS] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_AUDIO] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_VIDEO] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_ENET] |= CCM_ANALOG_PLL_LOCK;
s->analog[TEMPMON_TEMPSENSE0] = 0x00000001;
s->analog[TEMPMON_TEMPSENSE1] = 0x00000001;
s->analog[TEMPMON_TEMPSENSE2] = 0x00000000;
}
static uint64_t imx6ul_ccm_read(void *opaque, hwaddr offset, unsigned size)
{
uint32_t value = 0;
uint32_t index = offset >> 2;
IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
assert(index < CCM_MAX);
value = s->ccm[index];
trace_ccm_read_reg(imx6ul_ccm_reg_name(index), (uint32_t)value);
return (uint64_t)value;
}
static void imx6ul_ccm_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
uint32_t index = offset >> 2;
IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
assert(index < CCM_MAX);
trace_ccm_write_reg(imx6ul_ccm_reg_name(index), (uint32_t)value);
s->ccm[index] = (s->ccm[index] & ccm_mask[index]) |
((uint32_t)value & ~ccm_mask[index]);
}
static uint64_t imx6ul_analog_read(void *opaque, hwaddr offset, unsigned size)
{
uint32_t value;
uint32_t index = offset >> 2;
IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
assert(index < CCM_ANALOG_MAX);
switch (index) {
case CCM_ANALOG_PLL_ARM_SET:
case CCM_ANALOG_PLL_USB1_SET:
case CCM_ANALOG_PLL_USB2_SET:
case CCM_ANALOG_PLL_SYS_SET:
case CCM_ANALOG_PLL_AUDIO_SET:
case CCM_ANALOG_PLL_VIDEO_SET:
case CCM_ANALOG_PLL_ENET_SET:
case CCM_ANALOG_PFD_480_SET:
case CCM_ANALOG_PFD_528_SET:
case CCM_ANALOG_MISC0_SET:
case PMU_MISC1_SET:
case CCM_ANALOG_MISC2_SET:
case USB_ANALOG_USB1_VBUS_DETECT_SET:
case USB_ANALOG_USB1_CHRG_DETECT_SET:
case USB_ANALOG_USB1_MISC_SET:
case USB_ANALOG_USB2_VBUS_DETECT_SET:
case USB_ANALOG_USB2_CHRG_DETECT_SET:
case USB_ANALOG_USB2_MISC_SET:
case TEMPMON_TEMPSENSE0_SET:
case TEMPMON_TEMPSENSE1_SET:
case TEMPMON_TEMPSENSE2_SET:
/*
* All REG_NAME_SET register access are in fact targeting
* the REG_NAME register.
*/
value = s->analog[index - 1];
break;
case CCM_ANALOG_PLL_ARM_CLR:
case CCM_ANALOG_PLL_USB1_CLR:
case CCM_ANALOG_PLL_USB2_CLR:
case CCM_ANALOG_PLL_SYS_CLR:
case CCM_ANALOG_PLL_AUDIO_CLR:
case CCM_ANALOG_PLL_VIDEO_CLR:
case CCM_ANALOG_PLL_ENET_CLR:
case CCM_ANALOG_PFD_480_CLR:
case CCM_ANALOG_PFD_528_CLR:
case CCM_ANALOG_MISC0_CLR:
case PMU_MISC1_CLR:
case CCM_ANALOG_MISC2_CLR:
case USB_ANALOG_USB1_VBUS_DETECT_CLR:
case USB_ANALOG_USB1_CHRG_DETECT_CLR:
case USB_ANALOG_USB1_MISC_CLR:
case USB_ANALOG_USB2_VBUS_DETECT_CLR:
case USB_ANALOG_USB2_CHRG_DETECT_CLR:
case USB_ANALOG_USB2_MISC_CLR:
case TEMPMON_TEMPSENSE0_CLR:
case TEMPMON_TEMPSENSE1_CLR:
case TEMPMON_TEMPSENSE2_CLR:
/*
* All REG_NAME_CLR register access are in fact targeting
* the REG_NAME register.
*/
value = s->analog[index - 2];
break;
case CCM_ANALOG_PLL_ARM_TOG:
case CCM_ANALOG_PLL_USB1_TOG:
case CCM_ANALOG_PLL_USB2_TOG:
case CCM_ANALOG_PLL_SYS_TOG:
case CCM_ANALOG_PLL_AUDIO_TOG:
case CCM_ANALOG_PLL_VIDEO_TOG:
case CCM_ANALOG_PLL_ENET_TOG:
case CCM_ANALOG_PFD_480_TOG:
case CCM_ANALOG_PFD_528_TOG:
case CCM_ANALOG_MISC0_TOG:
case PMU_MISC1_TOG:
case CCM_ANALOG_MISC2_TOG:
case USB_ANALOG_USB1_VBUS_DETECT_TOG:
case USB_ANALOG_USB1_CHRG_DETECT_TOG:
case USB_ANALOG_USB1_MISC_TOG:
case USB_ANALOG_USB2_VBUS_DETECT_TOG:
case USB_ANALOG_USB2_CHRG_DETECT_TOG:
case USB_ANALOG_USB2_MISC_TOG:
case TEMPMON_TEMPSENSE0_TOG:
case TEMPMON_TEMPSENSE1_TOG:
case TEMPMON_TEMPSENSE2_TOG:
/*
* All REG_NAME_TOG register access are in fact targeting
* the REG_NAME register.
*/
value = s->analog[index - 3];
break;
default:
value = s->analog[index];
break;
}
trace_ccm_read_reg(imx6ul_analog_reg_name(index), (uint32_t)value);
return (uint64_t)value;
}
static void imx6ul_analog_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
uint32_t index = offset >> 2;
IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
assert(index < CCM_ANALOG_MAX);
trace_ccm_write_reg(imx6ul_analog_reg_name(index), (uint32_t)value);
switch (index) {
case CCM_ANALOG_PLL_ARM_SET:
case CCM_ANALOG_PLL_USB1_SET:
case CCM_ANALOG_PLL_USB2_SET:
case CCM_ANALOG_PLL_SYS_SET:
case CCM_ANALOG_PLL_AUDIO_SET:
case CCM_ANALOG_PLL_VIDEO_SET:
case CCM_ANALOG_PLL_ENET_SET:
case CCM_ANALOG_PFD_480_SET:
case CCM_ANALOG_PFD_528_SET:
case CCM_ANALOG_MISC0_SET:
case PMU_MISC1_SET:
case CCM_ANALOG_MISC2_SET:
case USB_ANALOG_USB1_VBUS_DETECT_SET:
case USB_ANALOG_USB1_CHRG_DETECT_SET:
case USB_ANALOG_USB1_MISC_SET:
case USB_ANALOG_USB2_VBUS_DETECT_SET:
case USB_ANALOG_USB2_CHRG_DETECT_SET:
case USB_ANALOG_USB2_MISC_SET:
/*
* All REG_NAME_SET register access are in fact targeting
* the REG_NAME register. So we change the value of the
* REG_NAME register, setting bits passed in the value.
*/
s->analog[index - 1] |= (value & ~analog_mask[index - 1]);
break;
case CCM_ANALOG_PLL_ARM_CLR:
case CCM_ANALOG_PLL_USB1_CLR:
case CCM_ANALOG_PLL_USB2_CLR:
case CCM_ANALOG_PLL_SYS_CLR:
case CCM_ANALOG_PLL_AUDIO_CLR:
case CCM_ANALOG_PLL_VIDEO_CLR:
case CCM_ANALOG_PLL_ENET_CLR:
case CCM_ANALOG_PFD_480_CLR:
case CCM_ANALOG_PFD_528_CLR:
case CCM_ANALOG_MISC0_CLR:
case PMU_MISC1_CLR:
case CCM_ANALOG_MISC2_CLR:
case USB_ANALOG_USB1_VBUS_DETECT_CLR:
case USB_ANALOG_USB1_CHRG_DETECT_CLR:
case USB_ANALOG_USB1_MISC_CLR:
case USB_ANALOG_USB2_VBUS_DETECT_CLR:
case USB_ANALOG_USB2_CHRG_DETECT_CLR:
case USB_ANALOG_USB2_MISC_CLR:
/*
* All REG_NAME_CLR register access are in fact targeting
* the REG_NAME register. So we change the value of the
* REG_NAME register, unsetting bits passed in the value.
*/
s->analog[index - 2] &= ~(value & ~analog_mask[index - 2]);
break;
case CCM_ANALOG_PLL_ARM_TOG:
case CCM_ANALOG_PLL_USB1_TOG:
case CCM_ANALOG_PLL_USB2_TOG:
case CCM_ANALOG_PLL_SYS_TOG:
case CCM_ANALOG_PLL_AUDIO_TOG:
case CCM_ANALOG_PLL_VIDEO_TOG:
case CCM_ANALOG_PLL_ENET_TOG:
case CCM_ANALOG_PFD_480_TOG:
case CCM_ANALOG_PFD_528_TOG:
case CCM_ANALOG_MISC0_TOG:
case PMU_MISC1_TOG:
case CCM_ANALOG_MISC2_TOG:
case USB_ANALOG_USB1_VBUS_DETECT_TOG:
case USB_ANALOG_USB1_CHRG_DETECT_TOG:
case USB_ANALOG_USB1_MISC_TOG:
case USB_ANALOG_USB2_VBUS_DETECT_TOG:
case USB_ANALOG_USB2_CHRG_DETECT_TOG:
case USB_ANALOG_USB2_MISC_TOG:
/*
* All REG_NAME_TOG register access are in fact targeting
* the REG_NAME register. So we change the value of the
* REG_NAME register, toggling bits passed in the value.
*/
s->analog[index - 3] ^= (value & ~analog_mask[index - 3]);
break;
default:
s->analog[index] = (s->analog[index] & analog_mask[index]) |
(value & ~analog_mask[index]);
break;
}
}
static const struct MemoryRegionOps imx6ul_ccm_ops = {
.read = imx6ul_ccm_read,
.write = imx6ul_ccm_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
/*
* Our device would not work correctly if the guest was doing
* unaligned access. This might not be a limitation on the real
* device but in practice there is no reason for a guest to access
* this device unaligned.
*/
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
};
static const struct MemoryRegionOps imx6ul_analog_ops = {
.read = imx6ul_analog_read,
.write = imx6ul_analog_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
/*
* Our device would not work correctly if the guest was doing
* unaligned access. This might not be a limitation on the real
* device but in practice there is no reason for a guest to access
* this device unaligned.
*/
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
};
static void imx6ul_ccm_init(Object *obj)
{
DeviceState *dev = DEVICE(obj);
SysBusDevice *sd = SYS_BUS_DEVICE(obj);
IMX6ULCCMState *s = IMX6UL_CCM(obj);
/* initialize a container for the all memory range */
memory_region_init(&s->container, OBJECT(dev), TYPE_IMX6UL_CCM, 0x8000);
/* We initialize an IO memory region for the CCM part */
memory_region_init_io(&s->ioccm, OBJECT(dev), &imx6ul_ccm_ops, s,
TYPE_IMX6UL_CCM ".ccm", CCM_MAX * sizeof(uint32_t));
/* Add the CCM as a subregion at offset 0 */
memory_region_add_subregion(&s->container, 0, &s->ioccm);
/* We initialize an IO memory region for the ANALOG part */
memory_region_init_io(&s->ioanalog, OBJECT(dev), &imx6ul_analog_ops, s,
TYPE_IMX6UL_CCM ".analog",
CCM_ANALOG_MAX * sizeof(uint32_t));
/* Add the ANALOG as a subregion at offset 0x4000 */
memory_region_add_subregion(&s->container, 0x4000, &s->ioanalog);
sysbus_init_mmio(sd, &s->container);
}
static void imx6ul_ccm_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
device_class_set_legacy_reset(dc, imx6ul_ccm_reset);
dc->vmsd = &vmstate_imx6ul_ccm;
dc->desc = "i.MX6UL Clock Control Module";
ccm->get_clock_frequency = imx6ul_ccm_get_clock_frequency;
}
static const TypeInfo imx6ul_ccm_info = {
.name = TYPE_IMX6UL_CCM,
.parent = TYPE_IMX_CCM,
.instance_size = sizeof(IMX6ULCCMState),
.instance_init = imx6ul_ccm_init,
.class_init = imx6ul_ccm_class_init,
};
static void imx6ul_ccm_register_types(void)
{
type_register_static(&imx6ul_ccm_info);
}
type_init(imx6ul_ccm_register_types)
|