1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
/*
* QEMU RISC-V NUMA Helper
*
* Copyright (c) 2020 Western Digital Corporation or its affiliates.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "hw/boards.h"
#include "hw/qdev-properties.h"
#include "hw/riscv/numa.h"
#include "system/device_tree.h"
static bool numa_enabled(const MachineState *ms)
{
return (ms->numa_state && ms->numa_state->num_nodes) ? true : false;
}
int riscv_socket_count(const MachineState *ms)
{
return (numa_enabled(ms)) ? ms->numa_state->num_nodes : 1;
}
int riscv_socket_first_hartid(const MachineState *ms, int socket_id)
{
int i, first_hartid = ms->smp.cpus;
if (!numa_enabled(ms)) {
return (!socket_id) ? 0 : -1;
}
for (i = 0; i < ms->smp.cpus; i++) {
if (ms->possible_cpus->cpus[i].props.node_id != socket_id) {
continue;
}
if (i < first_hartid) {
first_hartid = i;
}
}
return (first_hartid < ms->smp.cpus) ? first_hartid : -1;
}
int riscv_socket_last_hartid(const MachineState *ms, int socket_id)
{
int i, last_hartid = -1;
if (!numa_enabled(ms)) {
return (!socket_id) ? ms->smp.cpus - 1 : -1;
}
for (i = 0; i < ms->smp.cpus; i++) {
if (ms->possible_cpus->cpus[i].props.node_id != socket_id) {
continue;
}
if (i > last_hartid) {
last_hartid = i;
}
}
return (last_hartid < ms->smp.cpus) ? last_hartid : -1;
}
int riscv_socket_hart_count(const MachineState *ms, int socket_id)
{
int first_hartid, last_hartid;
if (!numa_enabled(ms)) {
return (!socket_id) ? ms->smp.cpus : -1;
}
first_hartid = riscv_socket_first_hartid(ms, socket_id);
if (first_hartid < 0) {
return -1;
}
last_hartid = riscv_socket_last_hartid(ms, socket_id);
if (last_hartid < 0) {
return -1;
}
if (first_hartid > last_hartid) {
return -1;
}
return last_hartid - first_hartid + 1;
}
bool riscv_socket_check_hartids(const MachineState *ms, int socket_id)
{
int i, first_hartid, last_hartid;
if (!numa_enabled(ms)) {
return (!socket_id) ? true : false;
}
first_hartid = riscv_socket_first_hartid(ms, socket_id);
if (first_hartid < 0) {
return false;
}
last_hartid = riscv_socket_last_hartid(ms, socket_id);
if (last_hartid < 0) {
return false;
}
for (i = first_hartid; i <= last_hartid; i++) {
if (ms->possible_cpus->cpus[i].props.node_id != socket_id) {
return false;
}
}
return true;
}
uint64_t riscv_socket_mem_offset(const MachineState *ms, int socket_id)
{
int i;
uint64_t mem_offset = 0;
if (!numa_enabled(ms)) {
return 0;
}
for (i = 0; i < ms->numa_state->num_nodes; i++) {
if (i == socket_id) {
break;
}
mem_offset += ms->numa_state->nodes[i].node_mem;
}
return (i == socket_id) ? mem_offset : 0;
}
uint64_t riscv_socket_mem_size(const MachineState *ms, int socket_id)
{
if (!numa_enabled(ms)) {
return (!socket_id) ? ms->ram_size : 0;
}
return (socket_id < ms->numa_state->num_nodes) ?
ms->numa_state->nodes[socket_id].node_mem : 0;
}
void riscv_socket_fdt_write_id(const MachineState *ms, const char *node_name,
int socket_id)
{
if (numa_enabled(ms)) {
qemu_fdt_setprop_cell(ms->fdt, node_name, "numa-node-id", socket_id);
}
}
void riscv_socket_fdt_write_distance_matrix(const MachineState *ms)
{
int i, j, idx;
g_autofree uint32_t *dist_matrix = NULL;
uint32_t dist_matrix_size;
if (numa_enabled(ms) && ms->numa_state->have_numa_distance) {
dist_matrix_size = riscv_socket_count(ms) * riscv_socket_count(ms);
dist_matrix_size *= (3 * sizeof(uint32_t));
dist_matrix = g_malloc0(dist_matrix_size);
for (i = 0; i < riscv_socket_count(ms); i++) {
for (j = 0; j < riscv_socket_count(ms); j++) {
idx = (i * riscv_socket_count(ms) + j) * 3;
dist_matrix[idx + 0] = cpu_to_be32(i);
dist_matrix[idx + 1] = cpu_to_be32(j);
dist_matrix[idx + 2] =
cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
}
}
qemu_fdt_add_subnode(ms->fdt, "/distance-map");
qemu_fdt_setprop_string(ms->fdt, "/distance-map", "compatible",
"numa-distance-map-v1");
qemu_fdt_setprop(ms->fdt, "/distance-map", "distance-matrix",
dist_matrix, dist_matrix_size);
}
}
CpuInstanceProperties
riscv_numa_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
{
MachineClass *mc = MACHINE_GET_CLASS(ms);
const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
assert(cpu_index < possible_cpus->len);
return possible_cpus->cpus[cpu_index].props;
}
int64_t riscv_numa_get_default_cpu_node_id(const MachineState *ms, int idx)
{
int64_t nidx = 0;
if (ms->numa_state->num_nodes > ms->smp.cpus) {
error_report("Number of NUMA nodes (%d)"
" cannot exceed the number of available CPUs (%u).",
ms->numa_state->num_nodes, ms->smp.cpus);
exit(EXIT_FAILURE);
}
if (ms->numa_state->num_nodes) {
nidx = idx / (ms->smp.cpus / ms->numa_state->num_nodes);
if (ms->numa_state->num_nodes <= nidx) {
nidx = ms->numa_state->num_nodes - 1;
}
}
return nidx;
}
const CPUArchIdList *riscv_numa_possible_cpu_arch_ids(MachineState *ms)
{
int n;
unsigned int max_cpus = ms->smp.max_cpus;
if (ms->possible_cpus) {
assert(ms->possible_cpus->len == max_cpus);
return ms->possible_cpus;
}
ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
sizeof(CPUArchId) * max_cpus);
ms->possible_cpus->len = max_cpus;
for (n = 0; n < ms->possible_cpus->len; n++) {
ms->possible_cpus->cpus[n].type = ms->cpu_type;
ms->possible_cpus->cpus[n].arch_id = n;
ms->possible_cpus->cpus[n].props.has_core_id = true;
ms->possible_cpus->cpus[n].props.core_id = n;
}
return ms->possible_cpus;
}
|