1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
|
/*
* ASPEED AST2400 Timer
*
* Andrew Jeffery <andrew@aj.id.au>
*
* Copyright (C) 2016 IBM Corp.
*
* This code is licensed under the GPL version 2 or later. See
* the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/irq.h"
#include "hw/sysbus.h"
#include "hw/timer/aspeed_timer.h"
#include "migration/vmstate.h"
#include "qemu/bitops.h"
#include "qemu/timer.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/qdev-properties.h"
#include "trace.h"
#define TIMER_NR_REGS 4
#define TIMER_CTRL_BITS 4
#define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1)
#define TIMER_CLOCK_USE_EXT true
#define TIMER_CLOCK_EXT_HZ 1000000
#define TIMER_CLOCK_USE_APB false
#define TIMER_REG_STATUS 0
#define TIMER_REG_RELOAD 1
#define TIMER_REG_MATCH_FIRST 2
#define TIMER_REG_MATCH_SECOND 3
#define TIMER_FIRST_CAP_PULSE 4
enum timer_ctrl_op {
op_enable = 0,
op_external_clock,
op_overflow_interrupt,
op_pulse_enable
};
/*
* Minimum value of the reload register to filter out short period
* timers which have a noticeable impact in emulation. 5us should be
* enough, use 20us for "safety".
*/
#define TIMER_MIN_NS (20 * SCALE_US)
/**
* Avoid mutual references between AspeedTimerCtrlState and AspeedTimer
* structs, as it's a waste of memory. The ptimer BH callback needs to know
* whether a specific AspeedTimer is enabled, but this information is held in
* AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an
* arbitrary AspeedTimer to AspeedTimerCtrlState.
*/
static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t)
{
const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t));
return container_of(timers, AspeedTimerCtrlState, timers);
}
static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op)
{
return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op));
}
static inline bool timer_enabled(AspeedTimer *t)
{
return timer_ctrl_status(t, op_enable);
}
static inline bool timer_overflow_interrupt(AspeedTimer *t)
{
return timer_ctrl_status(t, op_overflow_interrupt);
}
static inline bool timer_can_pulse(AspeedTimer *t)
{
return t->id >= TIMER_FIRST_CAP_PULSE;
}
static inline bool timer_external_clock(AspeedTimer *t)
{
return timer_ctrl_status(t, op_external_clock);
}
static inline uint32_t calculate_rate(struct AspeedTimer *t)
{
AspeedTimerCtrlState *s = timer_to_ctrl(t);
return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ :
aspeed_scu_get_apb_freq(s->scu);
}
static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns)
{
uint64_t delta_ns = now_ns - MIN(now_ns, t->start);
uint32_t rate = calculate_rate(t);
uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND);
return t->reload - MIN(t->reload, ticks);
}
static uint32_t calculate_min_ticks(AspeedTimer *t, uint32_t value)
{
uint32_t rate = calculate_rate(t);
uint32_t min_ticks = muldiv64(TIMER_MIN_NS, rate, NANOSECONDS_PER_SECOND);
return value < min_ticks ? min_ticks : value;
}
static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks)
{
uint64_t delta_ns;
uint64_t delta_ticks;
delta_ticks = t->reload - MIN(t->reload, ticks);
delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t));
return t->start + delta_ns;
}
static inline uint32_t calculate_match(struct AspeedTimer *t, int i)
{
return t->match[i] < t->reload ? t->match[i] : 0;
}
static uint64_t calculate_next(struct AspeedTimer *t)
{
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint64_t next;
/*
* We don't know the relationship between the values in the match
* registers, so sort using MAX/MIN/zero. We sort in that order as
* the timer counts down to zero.
*/
next = calculate_time(t, MAX(calculate_match(t, 0), calculate_match(t, 1)));
if (now < next) {
return next;
}
next = calculate_time(t, MIN(calculate_match(t, 0), calculate_match(t, 1)));
if (now < next) {
return next;
}
next = calculate_time(t, 0);
if (now < next) {
return next;
}
/* We've missed all deadlines, fire interrupt and try again */
timer_del(&t->timer);
if (timer_overflow_interrupt(t)) {
AspeedTimerCtrlState *s = timer_to_ctrl(t);
t->level = !t->level;
s->irq_sts |= BIT(t->id);
qemu_set_irq(t->irq, t->level);
}
next = MAX(calculate_match(t, 0), calculate_match(t, 1));
t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
return calculate_time(t, next);
}
static void aspeed_timer_mod(AspeedTimer *t)
{
uint64_t next = calculate_next(t);
if (next) {
timer_mod(&t->timer, next);
}
}
static void aspeed_timer_expire(void *opaque)
{
AspeedTimer *t = opaque;
bool interrupt = false;
uint32_t ticks;
if (!timer_enabled(t)) {
return;
}
ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
if (!ticks) {
interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1];
} else if (ticks <= MIN(t->match[0], t->match[1])) {
interrupt = true;
} else if (ticks <= MAX(t->match[0], t->match[1])) {
interrupt = true;
}
if (interrupt) {
AspeedTimerCtrlState *s = timer_to_ctrl(t);
t->level = !t->level;
s->irq_sts |= BIT(t->id);
qemu_set_irq(t->irq, t->level);
}
aspeed_timer_mod(t);
}
static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg)
{
uint64_t value;
switch (reg) {
case TIMER_REG_STATUS:
if (timer_enabled(t)) {
value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
} else {
value = t->reload;
}
break;
case TIMER_REG_RELOAD:
value = t->reload;
break;
case TIMER_REG_MATCH_FIRST:
case TIMER_REG_MATCH_SECOND:
value = t->match[reg - 2];
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
__func__, reg);
value = 0;
break;
}
return value;
}
static uint64_t aspeed_timer_read_common(AspeedTimerCtrlState *s, hwaddr offset)
{
const int reg = (offset & 0xf) / 4;
uint64_t value;
switch (offset) {
case 0x30: /* Control Register */
value = s->ctrl;
break;
case 0x00 ... 0x2c: /* Timers 1 - 4 */
value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg);
break;
case 0x40 ... 0x8c: /* Timers 5 - 8 */
value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
value = 0;
break;
}
return value;
}
static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg,
uint32_t value)
{
AspeedTimer *t;
uint32_t old_reload;
trace_aspeed_timer_set_value(timer, reg, value);
t = &s->timers[timer];
switch (reg) {
case TIMER_REG_RELOAD:
old_reload = t->reload;
t->reload = calculate_min_ticks(t, value);
/*
* If the reload value was not previously set, or zero, and
* the current value is valid, try to start the timer if it is
* enabled.
*/
if (old_reload || !t->reload) {
break;
}
/* fall through to re-enable */
case TIMER_REG_STATUS:
if (timer_enabled(t)) {
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now);
uint32_t rate = calculate_rate(t);
if (delta >= 0) {
t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate);
} else {
t->start -= muldiv64(-delta, NANOSECONDS_PER_SECOND, rate);
}
aspeed_timer_mod(t);
}
break;
case TIMER_REG_MATCH_FIRST:
case TIMER_REG_MATCH_SECOND:
t->match[reg - 2] = value;
if (timer_enabled(t)) {
aspeed_timer_mod(t);
}
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
__func__, reg);
break;
}
}
/*
* Control register operations are broken out into helpers that can be
* explicitly called on aspeed_timer_reset(), but also from
* aspeed_timer_ctrl_op().
*/
static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable)
{
trace_aspeed_timer_ctrl_enable(t->id, enable);
if (enable) {
t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
aspeed_timer_mod(t);
} else {
timer_del(&t->timer);
}
}
static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable)
{
trace_aspeed_timer_ctrl_external_clock(t->id, enable);
}
static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable)
{
trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable);
}
static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable)
{
if (timer_can_pulse(t)) {
trace_aspeed_timer_ctrl_pulse_enable(t->id, enable);
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Timer does not support pulse mode\n", __func__);
}
}
/**
* Given the actions are fixed in number and completely described in helper
* functions, dispatch with a lookup table rather than manage control flow with
* a switch statement.
*/
static void (*const ctrl_ops[])(AspeedTimer *, bool) = {
[op_enable] = aspeed_timer_ctrl_enable,
[op_external_clock] = aspeed_timer_ctrl_external_clock,
[op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt,
[op_pulse_enable] = aspeed_timer_ctrl_pulse_enable,
};
/**
* Conditionally affect changes chosen by a timer's control bit.
*
* The aspeed_timer_ctrl_op() interface is convenient for the
* aspeed_timer_set_ctrl() function as the "no change" early exit can be
* calculated for all operations, which cleans up the caller code. However the
* interface isn't convenient for the reset function where we want to enter a
* specific state without artificially constructing old and new values that
* will fall through the change guard (and motivates extracting the actions
* out to helper functions).
*
* @t: The timer to manipulate
* @op: The type of operation to be performed
* @old: The old state of the timer's control bits
* @new: The incoming state for the timer's control bits
*/
static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op,
uint8_t old, uint8_t new)
{
const uint8_t mask = BIT(op);
const bool enable = !!(new & mask);
const bool changed = ((old ^ new) & mask);
if (!changed) {
return;
}
ctrl_ops[op](t, enable);
}
static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg)
{
int i;
int shift;
uint8_t t_old, t_new;
AspeedTimer *t;
const uint8_t enable_mask = BIT(op_enable);
/*
* Handle a dependency between the 'enable' and remaining three
* configuration bits - i.e. if more than one bit in the control set has
* changed, including the 'enable' bit, then we want either disable the
* timer and perform configuration, or perform configuration and then
* enable the timer
*/
for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
t = &s->timers[i];
shift = (i * TIMER_CTRL_BITS);
t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
t_new = (reg >> shift) & TIMER_CTRL_MASK;
/* If we are disabling, do so first */
if ((t_old & enable_mask) && !(t_new & enable_mask)) {
aspeed_timer_ctrl_enable(t, false);
}
aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new);
aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new);
aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new);
/* If we are enabling, do so last */
if (!(t_old & enable_mask) && (t_new & enable_mask)) {
aspeed_timer_ctrl_enable(t, true);
}
}
s->ctrl = reg;
}
static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value)
{
trace_aspeed_timer_set_ctrl2(value);
}
static void aspeed_timer_write_common(AspeedTimerCtrlState *s, hwaddr offset,
uint64_t value)
{
const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
const int reg = (offset & 0xf) / 4;
switch (offset) {
/* Control Registers */
case 0x30:
aspeed_timer_set_ctrl(s, tv);
break;
/* Timer Registers */
case 0x00 ... 0x2c:
aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv);
break;
case 0x40 ... 0x8c:
aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
break;
}
}
static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size)
{
AspeedTimerCtrlState *s = ASPEED_TIMER(opaque);
return ASPEED_TIMER_GET_CLASS(s)->read(s, offset);
}
static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
AspeedTimerCtrlState *s = ASPEED_TIMER(opaque);
ASPEED_TIMER_GET_CLASS(s)->write(s, offset, value);
}
static const MemoryRegionOps aspeed_timer_ops = {
.read = aspeed_timer_read,
.write = aspeed_timer_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.valid.unaligned = false,
};
static uint64_t aspeed_2400_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
{
uint64_t value;
switch (offset) {
case 0x34:
value = s->ctrl2;
break;
case 0x38:
case 0x3C:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
value = 0;
break;
default:
value = aspeed_timer_read_common(s, offset);
break;
}
trace_aspeed_timer_read(offset, value);
return value;
}
static void aspeed_2400_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
uint64_t value)
{
const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
switch (offset) {
case 0x34:
aspeed_timer_set_ctrl2(s, tv);
break;
case 0x38:
case 0x3C:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
break;
default:
aspeed_timer_write_common(s, offset, value);
break;
}
}
static uint64_t aspeed_2500_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
{
uint64_t value;
switch (offset) {
case 0x34:
value = s->ctrl2;
break;
case 0x38:
value = s->ctrl3 & BIT(0);
break;
case 0x3C:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
value = 0;
break;
default:
value = aspeed_timer_read_common(s, offset);
break;
}
trace_aspeed_timer_read(offset, value);
return value;
}
static void aspeed_2500_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
uint64_t value)
{
const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
uint8_t command;
switch (offset) {
case 0x34:
aspeed_timer_set_ctrl2(s, tv);
break;
case 0x38:
command = (value >> 1) & 0xFF;
if (command == 0xAE) {
s->ctrl3 = 0x1;
} else if (command == 0xEA) {
s->ctrl3 = 0x0;
}
break;
case 0x3C:
if (s->ctrl3 & BIT(0)) {
aspeed_timer_set_ctrl(s, s->ctrl & ~tv);
}
break;
default:
aspeed_timer_write_common(s, offset, value);
break;
}
}
static uint64_t aspeed_2600_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
{
uint64_t value;
switch (offset) {
case 0x34:
value = s->irq_sts;
break;
case 0x38:
case 0x3C:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
value = 0;
break;
default:
value = aspeed_timer_read_common(s, offset);
break;
}
trace_aspeed_timer_read(offset, value);
return value;
}
static void aspeed_2600_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
uint64_t value)
{
const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
switch (offset) {
case 0x34:
s->irq_sts &= ~tv;
break;
case 0x3C:
aspeed_timer_set_ctrl(s, s->ctrl & ~tv);
break;
case 0x38:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
break;
default:
aspeed_timer_write_common(s, offset, value);
break;
}
}
static void aspeed_2700_timer_set_ctrl(AspeedTimerCtrlState *s, int index,
uint32_t reg)
{
const uint8_t overflow_interrupt_mask = BIT(op_overflow_interrupt);
const uint8_t external_clock_mask = BIT(op_external_clock);
const uint8_t pulse_enable_mask = BIT(op_pulse_enable);
const uint8_t enable_mask = BIT(op_enable);
AspeedTimer *t;
uint8_t t_old;
uint8_t t_new;
int shift;
/*
* Only 1 will set the specific bits to 1
* Handle a dependency between the 'enable' and remaining three
* configuration bits - i.e. if more than one bit in the control set has
* set, including the 'enable' bit, perform configuration and then
* enable the timer.
* Interrupt Status bit should not be set.
*/
t = &s->timers[index];
shift = index * TIMER_CTRL_BITS;
t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
t_new = reg & TIMER_CTRL_MASK;
if (!(t_old & external_clock_mask) &&
(t_new & external_clock_mask)) {
aspeed_timer_ctrl_external_clock(t, true);
s->ctrl = deposit32(s->ctrl, shift + op_external_clock, 1, 1);
}
if (!(t_old & overflow_interrupt_mask) &&
(t_new & overflow_interrupt_mask)) {
aspeed_timer_ctrl_overflow_interrupt(t, true);
s->ctrl = deposit32(s->ctrl, shift + op_overflow_interrupt, 1, 1);
}
if (!(t_old & pulse_enable_mask) &&
(t_new & pulse_enable_mask)) {
aspeed_timer_ctrl_pulse_enable(t, true);
s->ctrl = deposit32(s->ctrl, shift + op_pulse_enable, 1, 1);
}
/* If we are enabling, do so last */
if (!(t_old & enable_mask) &&
(t_new & enable_mask)) {
aspeed_timer_ctrl_enable(t, true);
s->ctrl = deposit32(s->ctrl, shift + op_enable, 1, 1);
}
}
static void aspeed_2700_timer_clear_ctrl(AspeedTimerCtrlState *s, int index,
uint32_t reg)
{
const uint8_t overflow_interrupt_mask = BIT(op_overflow_interrupt);
const uint8_t external_clock_mask = BIT(op_external_clock);
const uint8_t pulse_enable_mask = BIT(op_pulse_enable);
const uint8_t enable_mask = BIT(op_enable);
AspeedTimer *t;
uint8_t t_old;
uint8_t t_new;
int shift;
/*
* Only 1 will clear the specific bits to 0
* Handle a dependency between the 'enable' and remaining three
* configuration bits - i.e. if more than one bit in the control set has
* clear, including the 'enable' bit, then disable the timer and perform
* configuration
*/
t = &s->timers[index];
shift = index * TIMER_CTRL_BITS;
t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
t_new = reg & TIMER_CTRL_MASK;
/* If we are disabling, do so first */
if ((t_old & enable_mask) &&
(t_new & enable_mask)) {
aspeed_timer_ctrl_enable(t, false);
s->ctrl = deposit32(s->ctrl, shift + op_enable, 1, 0);
}
if ((t_old & external_clock_mask) &&
(t_new & external_clock_mask)) {
aspeed_timer_ctrl_external_clock(t, false);
s->ctrl = deposit32(s->ctrl, shift + op_external_clock, 1, 0);
}
if ((t_old & overflow_interrupt_mask) &&
(t_new & overflow_interrupt_mask)) {
aspeed_timer_ctrl_overflow_interrupt(t, false);
s->ctrl = deposit32(s->ctrl, shift + op_overflow_interrupt, 1, 0);
}
if ((t_old & pulse_enable_mask) &&
(t_new & pulse_enable_mask)) {
aspeed_timer_ctrl_pulse_enable(t, false);
s->ctrl = deposit32(s->ctrl, shift + op_pulse_enable, 1, 0);
}
/* Clear interrupt status */
if (reg & 0x10000) {
s->irq_sts = deposit32(s->irq_sts, index, 1, 0);
}
}
static uint64_t aspeed_2700_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
{
uint32_t timer_offset = offset & 0x3f;
int timer_index = offset >> 6;
uint64_t value = 0;
if (timer_index >= ASPEED_TIMER_NR_TIMERS) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: offset 0x%" PRIx64 " out of bounds\n",
__func__, offset);
return 0;
}
switch (timer_offset) {
/*
* Counter Status
* Counter Reload
* Counter First Matching
* Counter Second Matching
*/
case 0x00 ... 0x0C:
value = aspeed_timer_get_value(&s->timers[timer_index],
timer_offset >> 2);
break;
/* Counter Control and Interrupt Status */
case 0x10:
value = deposit64(value, 0, 4,
extract32(s->ctrl, timer_index * 4, 4));
value = deposit64(value, 16, 1,
extract32(s->irq_sts, timer_index, 1));
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: no getter for offset 0x%"
PRIx64"\n", __func__, offset);
value = 0;
break;
}
trace_aspeed_timer_read(offset, value);
return value;
}
static void aspeed_2700_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
uint64_t value)
{
const uint32_t timer_value = (uint32_t)(value & 0xFFFFFFFF);
uint32_t timer_offset = offset & 0x3f;
int timer_index = offset >> 6;
if (timer_index >= ASPEED_TIMER_NR_TIMERS) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: offset 0x%" PRIx64 " out of bounds\n",
__func__, offset);
}
switch (timer_offset) {
/*
* Counter Status
* Counter Reload
* Counter First Matching
* Counter Second Matching
*/
case 0x00 ... 0x0C:
aspeed_timer_set_value(s, timer_index, timer_offset >> 2,
timer_value);
break;
/* Counter Control Set and Interrupt Status */
case 0x10:
aspeed_2700_timer_set_ctrl(s, timer_index, timer_value);
break;
/* Counter Control Clear and Interrupr Status */
case 0x14:
aspeed_2700_timer_clear_ctrl(s, timer_index, timer_value);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: no setter for offset 0x%"
PRIx64"\n", __func__, offset);
break;
}
}
static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id)
{
AspeedTimer *t = &s->timers[id];
t->id = id;
timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t);
}
static void aspeed_timer_realize(DeviceState *dev, Error **errp)
{
int i;
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
assert(s->scu);
for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
aspeed_init_one_timer(s, i);
sysbus_init_irq(sbd, &s->timers[i].irq);
}
memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s,
TYPE_ASPEED_TIMER, 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
}
static void aspeed_timer_reset(DeviceState *dev)
{
int i;
AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
AspeedTimer *t = &s->timers[i];
/*
* Explicitly call helpers to avoid any conditional behaviour through
* aspeed_timer_set_ctrl().
*/
aspeed_timer_ctrl_enable(t, false);
aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB);
aspeed_timer_ctrl_overflow_interrupt(t, false);
aspeed_timer_ctrl_pulse_enable(t, false);
t->level = 0;
t->reload = 0;
t->match[0] = 0;
t->match[1] = 0;
}
s->ctrl = 0;
s->ctrl2 = 0;
s->ctrl3 = 0;
s->irq_sts = 0;
}
static const VMStateDescription vmstate_aspeed_timer = {
.name = "aspeed.timer",
.version_id = 2,
.minimum_version_id = 2,
.fields = (const VMStateField[]) {
VMSTATE_UINT8(id, AspeedTimer),
VMSTATE_INT32(level, AspeedTimer),
VMSTATE_TIMER(timer, AspeedTimer),
VMSTATE_UINT32(reload, AspeedTimer),
VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_aspeed_timer_state = {
.name = "aspeed.timerctrl",
.version_id = 2,
.minimum_version_id = 2,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(ctrl, AspeedTimerCtrlState),
VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState),
VMSTATE_UINT32(ctrl3, AspeedTimerCtrlState),
VMSTATE_UINT32(irq_sts, AspeedTimerCtrlState),
VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState,
ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer,
AspeedTimer),
VMSTATE_END_OF_LIST()
}
};
static const Property aspeed_timer_properties[] = {
DEFINE_PROP_LINK("scu", AspeedTimerCtrlState, scu, TYPE_ASPEED_SCU,
AspeedSCUState *),
};
static void timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = aspeed_timer_realize;
device_class_set_legacy_reset(dc, aspeed_timer_reset);
dc->desc = "ASPEED Timer";
dc->vmsd = &vmstate_aspeed_timer_state;
device_class_set_props(dc, aspeed_timer_properties);
}
static const TypeInfo aspeed_timer_info = {
.name = TYPE_ASPEED_TIMER,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(AspeedTimerCtrlState),
.class_init = timer_class_init,
.class_size = sizeof(AspeedTimerClass),
.abstract = true,
};
static void aspeed_2400_timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
dc->desc = "ASPEED 2400 Timer";
awc->read = aspeed_2400_timer_read;
awc->write = aspeed_2400_timer_write;
}
static const TypeInfo aspeed_2400_timer_info = {
.name = TYPE_ASPEED_2400_TIMER,
.parent = TYPE_ASPEED_TIMER,
.class_init = aspeed_2400_timer_class_init,
};
static void aspeed_2500_timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
dc->desc = "ASPEED 2500 Timer";
awc->read = aspeed_2500_timer_read;
awc->write = aspeed_2500_timer_write;
}
static const TypeInfo aspeed_2500_timer_info = {
.name = TYPE_ASPEED_2500_TIMER,
.parent = TYPE_ASPEED_TIMER,
.class_init = aspeed_2500_timer_class_init,
};
static void aspeed_2600_timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
dc->desc = "ASPEED 2600 Timer";
awc->read = aspeed_2600_timer_read;
awc->write = aspeed_2600_timer_write;
}
static const TypeInfo aspeed_2600_timer_info = {
.name = TYPE_ASPEED_2600_TIMER,
.parent = TYPE_ASPEED_TIMER,
.class_init = aspeed_2600_timer_class_init,
};
static void aspeed_1030_timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
dc->desc = "ASPEED 1030 Timer";
awc->read = aspeed_2600_timer_read;
awc->write = aspeed_2600_timer_write;
}
static const TypeInfo aspeed_1030_timer_info = {
.name = TYPE_ASPEED_1030_TIMER,
.parent = TYPE_ASPEED_TIMER,
.class_init = aspeed_1030_timer_class_init,
};
static void aspeed_2700_timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
dc->desc = "ASPEED 2700 Timer";
awc->read = aspeed_2700_timer_read;
awc->write = aspeed_2700_timer_write;
}
static const TypeInfo aspeed_2700_timer_info = {
.name = TYPE_ASPEED_2700_TIMER,
.parent = TYPE_ASPEED_TIMER,
.class_init = aspeed_2700_timer_class_init,
};
static void aspeed_timer_register_types(void)
{
type_register_static(&aspeed_timer_info);
type_register_static(&aspeed_2400_timer_info);
type_register_static(&aspeed_2500_timer_info);
type_register_static(&aspeed_2600_timer_info);
type_register_static(&aspeed_1030_timer_info);
type_register_static(&aspeed_2700_timer_info);
}
type_init(aspeed_timer_register_types)
|