1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
/*
* Arm SSE Subsystem System Timer
*
* Copyright (c) 2020 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/*
* This is a model of the "System timer" which is documented in
* the Arm SSE-123 Example Subsystem Technical Reference Manual:
* https://developer.arm.com/documentation/101370/latest/
*
* The timer is based around a simple 64-bit incrementing counter
* (readable from CNTPCT_HI/LO). The timer fires when
* Counter - CompareValue >= 0.
* The CompareValue is guest-writable, via CNTP_CVAL_HI/LO.
* CNTP_TVAL is an alternative view of the CompareValue defined by
* TimerValue = CompareValue[31:0] - Counter[31:0]
* which can be both read and written.
* This part is similar to the generic timer in an Arm A-class CPU.
*
* The timer also has a separate auto-increment timer. When this
* timer is enabled, then the AutoIncrValue is set to:
* AutoIncrValue = Reload + Counter
* and this timer fires when
* Counter - AutoIncrValue >= 0
* at which point, an interrupt is generated and the new AutoIncrValue
* is calculated.
* When the auto-increment timer is enabled, interrupt generation
* via the compare/timervalue registers is disabled.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/timer.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/timer/sse-timer.h"
#include "hw/timer/sse-counter.h"
#include "hw/sysbus.h"
#include "hw/irq.h"
#include "hw/registerfields.h"
#include "hw/clock.h"
#include "hw/qdev-clock.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
REG32(CNTPCT_LO, 0x0)
REG32(CNTPCT_HI, 0x4)
REG32(CNTFRQ, 0x10)
REG32(CNTP_CVAL_LO, 0x20)
REG32(CNTP_CVAL_HI, 0x24)
REG32(CNTP_TVAL, 0x28)
REG32(CNTP_CTL, 0x2c)
FIELD(CNTP_CTL, ENABLE, 0, 1)
FIELD(CNTP_CTL, IMASK, 1, 1)
FIELD(CNTP_CTL, ISTATUS, 2, 1)
REG32(CNTP_AIVAL_LO, 0x40)
REG32(CNTP_AIVAL_HI, 0x44)
REG32(CNTP_AIVAL_RELOAD, 0x48)
REG32(CNTP_AIVAL_CTL, 0x4c)
FIELD(CNTP_AIVAL_CTL, EN, 0, 1)
FIELD(CNTP_AIVAL_CTL, CLR, 1, 1)
REG32(CNTP_CFG, 0x50)
FIELD(CNTP_CFG, AIVAL, 0, 4)
#define R_CNTP_CFG_AIVAL_IMPLEMENTED 1
REG32(PID4, 0xFD0)
REG32(PID5, 0xFD4)
REG32(PID6, 0xFD8)
REG32(PID7, 0xFDC)
REG32(PID0, 0xFE0)
REG32(PID1, 0xFE4)
REG32(PID2, 0xFE8)
REG32(PID3, 0xFEC)
REG32(CID0, 0xFF0)
REG32(CID1, 0xFF4)
REG32(CID2, 0xFF8)
REG32(CID3, 0xFFC)
/* PID/CID values */
static const int timer_id[] = {
0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
0xb7, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
};
static bool sse_is_autoinc(SSETimer *s)
{
return (s->cntp_aival_ctl & R_CNTP_AIVAL_CTL_EN_MASK) != 0;
}
static bool sse_enabled(SSETimer *s)
{
return (s->cntp_ctl & R_CNTP_CTL_ENABLE_MASK) != 0;
}
static uint64_t sse_cntpct(SSETimer *s)
{
/* Return the CNTPCT value for the current time */
return sse_counter_for_timestamp(s->counter,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
}
static bool sse_timer_status(SSETimer *s)
{
/*
* Return true if timer condition is met. This is used for both
* the CNTP_CTL.ISTATUS bit and for whether (unless masked) we
* assert our IRQ.
* The documentation is unclear about the behaviour of ISTATUS when
* in autoincrement mode; we assume that it follows CNTP_AIVAL_CTL.CLR
* (ie whether the autoincrement timer is asserting the interrupt).
*/
if (!sse_enabled(s)) {
return false;
}
if (sse_is_autoinc(s)) {
return s->cntp_aival_ctl & R_CNTP_AIVAL_CTL_CLR_MASK;
} else {
return sse_cntpct(s) >= s->cntp_cval;
}
}
static void sse_update_irq(SSETimer *s)
{
bool irqstate = (!(s->cntp_ctl & R_CNTP_CTL_IMASK_MASK) &&
sse_timer_status(s));
qemu_set_irq(s->irq, irqstate);
}
static void sse_set_timer(SSETimer *s, uint64_t nexttick)
{
/* Set the timer to expire at nexttick */
uint64_t expiry = sse_counter_tick_to_time(s->counter, nexttick);
if (expiry <= INT64_MAX) {
timer_mod_ns(&s->timer, expiry);
} else {
/*
* nexttick is so far in the future that it would overflow the
* signed 64-bit range of a QEMUTimer. Since timer_mod_ns()
* expiry times are absolute, not relative, we are never going
* to be able to set the timer to this value, so we must just
* assume that guest execution can never run so long that it
* reaches the theoretical point when the timer fires.
* This is also the code path for "counter is not running",
* which is signalled by expiry == UINT64_MAX.
*/
timer_del(&s->timer);
}
}
static void sse_recalc_timer(SSETimer *s)
{
/* Recalculate the normal timer */
uint64_t count, nexttick;
if (sse_is_autoinc(s)) {
return;
}
if (!sse_enabled(s)) {
timer_del(&s->timer);
return;
}
count = sse_cntpct(s);
if (count >= s->cntp_cval) {
/*
* Timer condition already met. In theory we have a transition when
* the count rolls back over to 0, but that is so far in the future
* that it is not representable as a timer_mod() expiry, so in
* fact sse_set_timer() will always just delete the timer.
*/
nexttick = UINT64_MAX;
} else {
/* Next transition is when count hits cval */
nexttick = s->cntp_cval;
}
sse_set_timer(s, nexttick);
sse_update_irq(s);
}
static void sse_autoinc(SSETimer *s)
{
/* Auto-increment the AIVAL, and set the timer accordingly */
s->cntp_aival = sse_cntpct(s) + s->cntp_aival_reload;
sse_set_timer(s, s->cntp_aival);
}
static void sse_timer_cb(void *opaque)
{
SSETimer *s = SSE_TIMER(opaque);
if (sse_is_autoinc(s)) {
uint64_t count = sse_cntpct(s);
if (count >= s->cntp_aival) {
/* Timer condition met, set CLR and do another autoinc */
s->cntp_aival_ctl |= R_CNTP_AIVAL_CTL_CLR_MASK;
s->cntp_aival = count + s->cntp_aival_reload;
}
sse_set_timer(s, s->cntp_aival);
sse_update_irq(s);
} else {
sse_recalc_timer(s);
}
}
static uint64_t sse_timer_read(void *opaque, hwaddr offset, unsigned size)
{
SSETimer *s = SSE_TIMER(opaque);
uint64_t r;
switch (offset) {
case A_CNTPCT_LO:
r = extract64(sse_cntpct(s), 0, 32);
break;
case A_CNTPCT_HI:
r = extract64(sse_cntpct(s), 32, 32);
break;
case A_CNTFRQ:
r = s->cntfrq;
break;
case A_CNTP_CVAL_LO:
r = extract64(s->cntp_cval, 0, 32);
break;
case A_CNTP_CVAL_HI:
r = extract64(s->cntp_cval, 32, 32);
break;
case A_CNTP_TVAL:
r = extract64(s->cntp_cval - sse_cntpct(s), 0, 32);
break;
case A_CNTP_CTL:
r = s->cntp_ctl;
if (sse_timer_status(s)) {
r |= R_CNTP_CTL_ISTATUS_MASK;
}
break;
case A_CNTP_AIVAL_LO:
r = extract64(s->cntp_aival, 0, 32);
break;
case A_CNTP_AIVAL_HI:
r = extract64(s->cntp_aival, 32, 32);
break;
case A_CNTP_AIVAL_RELOAD:
r = s->cntp_aival_reload;
break;
case A_CNTP_AIVAL_CTL:
/*
* All the bits of AIVAL_CTL are documented as WO, but this is probably
* a documentation error. We implement them as readable.
*/
r = s->cntp_aival_ctl;
break;
case A_CNTP_CFG:
r = R_CNTP_CFG_AIVAL_IMPLEMENTED << R_CNTP_CFG_AIVAL_SHIFT;
break;
case A_PID4 ... A_CID3:
r = timer_id[(offset - A_PID4) / 4];
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"SSE System Timer read: bad offset 0x%x",
(unsigned) offset);
r = 0;
break;
}
trace_sse_timer_read(offset, r, size);
return r;
}
static void sse_timer_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
SSETimer *s = SSE_TIMER(opaque);
trace_sse_timer_write(offset, value, size);
switch (offset) {
case A_CNTFRQ:
s->cntfrq = value;
break;
case A_CNTP_CVAL_LO:
s->cntp_cval = deposit64(s->cntp_cval, 0, 32, value);
sse_recalc_timer(s);
break;
case A_CNTP_CVAL_HI:
s->cntp_cval = deposit64(s->cntp_cval, 32, 32, value);
sse_recalc_timer(s);
break;
case A_CNTP_TVAL:
s->cntp_cval = sse_cntpct(s) + sextract64(value, 0, 32);
sse_recalc_timer(s);
break;
case A_CNTP_CTL:
{
uint32_t old_ctl = s->cntp_ctl;
value &= R_CNTP_CTL_ENABLE_MASK | R_CNTP_CTL_IMASK_MASK;
s->cntp_ctl = value;
if ((old_ctl ^ s->cntp_ctl) & R_CNTP_CTL_ENABLE_MASK) {
if (sse_enabled(s)) {
if (sse_is_autoinc(s)) {
sse_autoinc(s);
} else {
sse_recalc_timer(s);
}
}
}
sse_update_irq(s);
break;
}
case A_CNTP_AIVAL_RELOAD:
s->cntp_aival_reload = value;
break;
case A_CNTP_AIVAL_CTL:
{
uint32_t old_ctl = s->cntp_aival_ctl;
/* EN bit is writable; CLR bit is write-0-to-clear, write-1-ignored */
s->cntp_aival_ctl &= ~R_CNTP_AIVAL_CTL_EN_MASK;
s->cntp_aival_ctl |= value & R_CNTP_AIVAL_CTL_EN_MASK;
if (!(value & R_CNTP_AIVAL_CTL_CLR_MASK)) {
s->cntp_aival_ctl &= ~R_CNTP_AIVAL_CTL_CLR_MASK;
}
if ((old_ctl ^ s->cntp_aival_ctl) & R_CNTP_AIVAL_CTL_EN_MASK) {
/* Auto-increment toggled on/off */
if (sse_enabled(s)) {
if (sse_is_autoinc(s)) {
sse_autoinc(s);
} else {
sse_recalc_timer(s);
}
}
}
sse_update_irq(s);
break;
}
case A_CNTPCT_LO:
case A_CNTPCT_HI:
case A_CNTP_CFG:
case A_CNTP_AIVAL_LO:
case A_CNTP_AIVAL_HI:
case A_PID4 ... A_CID3:
qemu_log_mask(LOG_GUEST_ERROR,
"SSE System Timer write: write to RO offset 0x%x\n",
(unsigned)offset);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"SSE System Timer write: bad offset 0x%x\n",
(unsigned)offset);
break;
}
}
static const MemoryRegionOps sse_timer_ops = {
.read = sse_timer_read,
.write = sse_timer_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
};
static void sse_timer_reset(DeviceState *dev)
{
SSETimer *s = SSE_TIMER(dev);
trace_sse_timer_reset();
timer_del(&s->timer);
s->cntfrq = 0;
s->cntp_ctl = 0;
s->cntp_cval = 0;
s->cntp_aival = 0;
s->cntp_aival_ctl = 0;
s->cntp_aival_reload = 0;
}
static void sse_timer_counter_callback(Notifier *notifier, void *data)
{
SSETimer *s = container_of(notifier, SSETimer, counter_notifier);
/* System counter told us we need to recalculate */
if (sse_enabled(s)) {
if (sse_is_autoinc(s)) {
sse_set_timer(s, s->cntp_aival);
} else {
sse_recalc_timer(s);
}
}
}
static void sse_timer_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
SSETimer *s = SSE_TIMER(obj);
memory_region_init_io(&s->iomem, obj, &sse_timer_ops,
s, "sse-timer", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq);
}
static void sse_timer_realize(DeviceState *dev, Error **errp)
{
SSETimer *s = SSE_TIMER(dev);
if (!s->counter) {
error_setg(errp, "counter property was not set");
return;
}
s->counter_notifier.notify = sse_timer_counter_callback;
sse_counter_register_consumer(s->counter, &s->counter_notifier);
timer_init_ns(&s->timer, QEMU_CLOCK_VIRTUAL, sse_timer_cb, s);
}
static const VMStateDescription sse_timer_vmstate = {
.name = "sse-timer",
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_TIMER(timer, SSETimer),
VMSTATE_UINT32(cntfrq, SSETimer),
VMSTATE_UINT32(cntp_ctl, SSETimer),
VMSTATE_UINT64(cntp_cval, SSETimer),
VMSTATE_UINT64(cntp_aival, SSETimer),
VMSTATE_UINT32(cntp_aival_ctl, SSETimer),
VMSTATE_UINT32(cntp_aival_reload, SSETimer),
VMSTATE_END_OF_LIST()
}
};
static const Property sse_timer_properties[] = {
DEFINE_PROP_LINK("counter", SSETimer, counter, TYPE_SSE_COUNTER, SSECounter *),
};
static void sse_timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = sse_timer_realize;
dc->vmsd = &sse_timer_vmstate;
device_class_set_legacy_reset(dc, sse_timer_reset);
device_class_set_props(dc, sse_timer_properties);
}
static const TypeInfo sse_timer_info = {
.name = TYPE_SSE_TIMER,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(SSETimer),
.instance_init = sse_timer_init,
.class_init = sse_timer_class_init,
};
static void sse_timer_register_types(void)
{
type_register_static(&sse_timer_info);
}
type_init(sse_timer_register_types);
|