1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
/*
* Post-process a vdso elf image for inclusion into qemu.
* Elf size specialization.
*
* Copyright 2023 Linaro, Ltd.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
static void elfN(bswap_ehdr)(ElfN(Ehdr) *ehdr)
{
bswaps(&ehdr->e_type); /* Object file type */
bswaps(&ehdr->e_machine); /* Architecture */
bswaps(&ehdr->e_version); /* Object file version */
bswaps(&ehdr->e_entry); /* Entry point virtual address */
bswaps(&ehdr->e_phoff); /* Program header table file offset */
bswaps(&ehdr->e_shoff); /* Section header table file offset */
bswaps(&ehdr->e_flags); /* Processor-specific flags */
bswaps(&ehdr->e_ehsize); /* ELF header size in bytes */
bswaps(&ehdr->e_phentsize); /* Program header table entry size */
bswaps(&ehdr->e_phnum); /* Program header table entry count */
bswaps(&ehdr->e_shentsize); /* Section header table entry size */
bswaps(&ehdr->e_shnum); /* Section header table entry count */
bswaps(&ehdr->e_shstrndx); /* Section header string table index */
}
static void elfN(bswap_phdr)(ElfN(Phdr) *phdr)
{
bswaps(&phdr->p_type); /* Segment type */
bswaps(&phdr->p_flags); /* Segment flags */
bswaps(&phdr->p_offset); /* Segment file offset */
bswaps(&phdr->p_vaddr); /* Segment virtual address */
bswaps(&phdr->p_paddr); /* Segment physical address */
bswaps(&phdr->p_filesz); /* Segment size in file */
bswaps(&phdr->p_memsz); /* Segment size in memory */
bswaps(&phdr->p_align); /* Segment alignment */
}
static void elfN(bswap_shdr)(ElfN(Shdr) *shdr)
{
bswaps(&shdr->sh_name);
bswaps(&shdr->sh_type);
bswaps(&shdr->sh_flags);
bswaps(&shdr->sh_addr);
bswaps(&shdr->sh_offset);
bswaps(&shdr->sh_size);
bswaps(&shdr->sh_link);
bswaps(&shdr->sh_info);
bswaps(&shdr->sh_addralign);
bswaps(&shdr->sh_entsize);
}
static void elfN(bswap_sym)(ElfN(Sym) *sym)
{
bswaps(&sym->st_name);
bswaps(&sym->st_value);
bswaps(&sym->st_size);
bswaps(&sym->st_shndx);
}
static void elfN(bswap_dyn)(ElfN(Dyn) *dyn)
{
bswaps(&dyn->d_tag); /* Dynamic type tag */
bswaps(&dyn->d_un.d_ptr); /* Dynamic ptr or val, in union */
}
static void elfN(search_symtab)(ElfN(Shdr) *shdr, unsigned sym_idx,
void *buf, bool need_bswap)
{
unsigned str_idx = shdr[sym_idx].sh_link;
ElfN(Sym) *target_sym = buf + shdr[sym_idx].sh_offset;
unsigned sym_n = shdr[sym_idx].sh_size / sizeof(*target_sym);
const char *str = buf + shdr[str_idx].sh_offset;
for (unsigned i = 0; i < sym_n; ++i) {
const char *name;
ElfN(Sym) sym;
memcpy(&sym, &target_sym[i], sizeof(sym));
if (need_bswap) {
elfN(bswap_sym)(&sym);
}
name = str + sym.st_name;
if (sigreturn_sym && strcmp(sigreturn_sym, name) == 0) {
sigreturn_addr = sym.st_value;
}
if (rt_sigreturn_sym && strcmp(rt_sigreturn_sym, name) == 0) {
rt_sigreturn_addr = sym.st_value;
}
}
}
static void elfN(bswap_ps_hdrs)(ElfN(Ehdr) *ehdr)
{
ElfN(Phdr) *phdr = (void *)ehdr + ehdr->e_phoff;
ElfN(Shdr) *shdr = (void *)ehdr + ehdr->e_shoff;
ElfN(Half) i;
for (i = 0; i < ehdr->e_phnum; ++i) {
elfN(bswap_phdr)(&phdr[i]);
}
for (i = 0; i < ehdr->e_shnum; ++i) {
elfN(bswap_shdr)(&shdr[i]);
}
}
static void elfN(process)(FILE *outf, void *buf, long len, bool need_bswap)
{
ElfN(Ehdr) *ehdr = buf;
ElfN(Phdr) *phdr;
ElfN(Shdr) *shdr;
unsigned phnum, shnum;
unsigned dynamic_ofs = 0;
unsigned dynamic_addr = 0;
unsigned symtab_idx = 0;
unsigned dynsym_idx = 0;
unsigned first_segsz = 0;
int errors = 0;
if (need_bswap) {
elfN(bswap_ehdr)(buf);
elfN(bswap_ps_hdrs)(buf);
}
phnum = ehdr->e_phnum;
phdr = buf + ehdr->e_phoff;
shnum = ehdr->e_shnum;
shdr = buf + ehdr->e_shoff;
for (unsigned i = 0; i < shnum; ++i) {
switch (shdr[i].sh_type) {
case SHT_SYMTAB:
symtab_idx = i;
break;
case SHT_DYNSYM:
dynsym_idx = i;
break;
}
}
/*
* Validate the VDSO is created as we expect: that PT_PHDR,
* PT_DYNAMIC, and PT_NOTE located in a writable data segment.
* PHDR and DYNAMIC require relocation, and NOTE will get the
* linux version number.
*/
for (unsigned i = 0; i < phnum; ++i) {
if (phdr[i].p_type != PT_LOAD) {
continue;
}
if (first_segsz != 0) {
fprintf(stderr, "Multiple LOAD segments\n");
errors++;
}
if (phdr[i].p_offset != 0) {
fprintf(stderr, "LOAD segment does not cover EHDR\n");
errors++;
}
if (phdr[i].p_vaddr != 0) {
fprintf(stderr, "LOAD segment not loaded at address 0\n");
errors++;
}
/*
* Extend the program header to cover the entire VDSO, so that
* load_elf_vdso() loads everything, including section headers.
*
* Require that there is no .bss, since it would break this
* approach.
*/
if (phdr[i].p_filesz != phdr[i].p_memsz) {
fprintf(stderr, "LOAD segment's filesz and memsz differ\n");
errors++;
}
if (phdr[i].p_filesz > len) {
fprintf(stderr, "LOAD segment is larger than the whole VDSO\n");
errors++;
}
phdr[i].p_filesz = len;
phdr[i].p_memsz = len;
first_segsz = len;
if (first_segsz < ehdr->e_phoff + phnum * sizeof(*phdr)) {
fprintf(stderr, "LOAD segment does not cover PHDRs\n");
errors++;
}
if ((phdr[i].p_flags & (PF_R | PF_W)) != (PF_R | PF_W)) {
fprintf(stderr, "LOAD segment is not read-write\n");
errors++;
}
}
for (unsigned i = 0; i < phnum; ++i) {
const char *which;
switch (phdr[i].p_type) {
case PT_PHDR:
which = "PT_PHDR";
break;
case PT_NOTE:
which = "PT_NOTE";
break;
case PT_DYNAMIC:
dynamic_ofs = phdr[i].p_offset;
dynamic_addr = phdr[i].p_vaddr;
which = "PT_DYNAMIC";
break;
default:
continue;
}
if (first_segsz < phdr[i].p_vaddr + phdr[i].p_filesz) {
fprintf(stderr, "LOAD segment does not cover %s\n", which);
errors++;
}
}
if (errors) {
exit(EXIT_FAILURE);
}
/* Relocate the program headers. */
for (unsigned i = 0; i < phnum; ++i) {
output_reloc(outf, buf, &phdr[i].p_vaddr);
output_reloc(outf, buf, &phdr[i].p_paddr);
}
/* Relocate the section headers. */
for (unsigned i = 0; i < shnum; ++i) {
output_reloc(outf, buf, &shdr[i].sh_addr);
}
/* Relocate the DYNAMIC entries. */
if (dynamic_addr) {
ElfN(Dyn) *target_dyn = buf + dynamic_ofs;
__typeof(((ElfN(Dyn) *)target_dyn)->d_tag) tag;
do {
ElfN(Dyn) dyn;
memcpy(&dyn, target_dyn, sizeof(dyn));
if (need_bswap) {
elfN(bswap_dyn)(&dyn);
}
tag = dyn.d_tag;
switch (tag) {
case DT_HASH:
case DT_SYMTAB:
case DT_STRTAB:
case DT_VERDEF:
case DT_VERSYM:
case DT_PLTGOT:
case DT_ADDRRNGLO ... DT_ADDRRNGHI:
/* These entries store an address in the entry. */
output_reloc(outf, buf, &target_dyn->d_un.d_val);
break;
case DT_NULL:
case DT_STRSZ:
case DT_SONAME:
case DT_DEBUG:
case DT_FLAGS:
case DT_FLAGS_1:
case DT_SYMBOLIC:
case DT_BIND_NOW:
case DT_VERDEFNUM:
case DT_VALRNGLO ... DT_VALRNGHI:
/* These entries store an integer in the entry. */
break;
case DT_SYMENT:
if (dyn.d_un.d_val != sizeof(ElfN(Sym))) {
fprintf(stderr, "VDSO has incorrect dynamic symbol size\n");
errors++;
}
break;
case DT_REL:
case DT_RELSZ:
case DT_RELA:
case DT_RELASZ:
/*
* These entries indicate that the VDSO was built incorrectly.
* It should not have any real relocations.
* ??? The RISC-V toolchain will emit these even when there
* are no relocations. Validate zeros.
*/
if (dyn.d_un.d_val != 0) {
fprintf(stderr, "VDSO has dynamic relocations\n");
errors++;
}
break;
case DT_RELENT:
case DT_RELAENT:
case DT_TEXTREL:
/* These entries store an integer in the entry. */
/* Should not be required; see above. */
break;
case DT_NEEDED:
case DT_VERNEED:
case DT_PLTREL:
case DT_JMPREL:
case DT_RPATH:
case DT_RUNPATH:
fprintf(stderr, "VDSO has external dependencies\n");
errors++;
break;
case PT_LOPROC + 3:
if (ehdr->e_machine == EM_PPC64) {
break; /* DT_PPC64_OPT: integer bitmask */
}
goto do_default;
default:
do_default:
/* This is probably something target specific. */
fprintf(stderr, "VDSO has unknown DYNAMIC entry (%lx)\n",
(unsigned long)tag);
errors++;
break;
}
target_dyn++;
} while (tag != DT_NULL);
if (errors) {
exit(EXIT_FAILURE);
}
}
/* Relocate the dynamic symbol table. */
if (dynsym_idx) {
ElfN(Sym) *target_sym = buf + shdr[dynsym_idx].sh_offset;
unsigned sym_n = shdr[dynsym_idx].sh_size / sizeof(*target_sym);
for (unsigned i = 0; i < sym_n; ++i) {
output_reloc(outf, buf, &target_sym[i].st_value);
}
}
/* Search both dynsym and symtab for the signal return symbols. */
if (dynsym_idx) {
elfN(search_symtab)(shdr, dynsym_idx, buf, need_bswap);
}
if (symtab_idx) {
elfN(search_symtab)(shdr, symtab_idx, buf, need_bswap);
}
if (need_bswap) {
elfN(bswap_ps_hdrs)(buf);
elfN(bswap_ehdr)(buf);
}
}
|