1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
/*
* ARM AArch64 cpu init and loop
*
* Copyright (c) 2015 Stacey Son
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TARGET_ARCH_CPU_H
#define TARGET_ARCH_CPU_H
#include "target_arch.h"
#include "signal-common.h"
#include "target/arm/syndrome.h"
#define TARGET_DEFAULT_CPU_MODEL "any"
static inline void target_cpu_init(CPUARMState *env,
struct target_pt_regs *regs)
{
int i;
if (!(arm_feature(env, ARM_FEATURE_AARCH64))) {
fprintf(stderr, "The selected ARM CPU does not support 64 bit mode\n");
exit(1);
}
for (i = 0; i < 31; i++) {
env->xregs[i] = regs->regs[i];
}
env->pc = regs->pc;
env->xregs[31] = regs->sp;
}
static inline G_NORETURN void target_cpu_loop(CPUARMState *env)
{
CPUState *cs = env_cpu(env);
int trapnr, ec, fsc, si_code, si_signo;
uint64_t code, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8;
abi_long ret;
for (;;) {
cpu_exec_start(cs);
trapnr = cpu_exec(cs);
cpu_exec_end(cs);
process_queued_cpu_work(cs);
switch (trapnr) {
case EXCP_SWI:
/* See arm64/arm64/trap.c cpu_fetch_syscall_args() */
code = env->xregs[8];
if (code == TARGET_FREEBSD_NR_syscall ||
code == TARGET_FREEBSD_NR___syscall) {
code = env->xregs[0];
arg1 = env->xregs[1];
arg2 = env->xregs[2];
arg3 = env->xregs[3];
arg4 = env->xregs[4];
arg5 = env->xregs[5];
arg6 = env->xregs[6];
arg7 = env->xregs[7];
arg8 = 0;
} else {
arg1 = env->xregs[0];
arg2 = env->xregs[1];
arg3 = env->xregs[2];
arg4 = env->xregs[3];
arg5 = env->xregs[4];
arg6 = env->xregs[5];
arg7 = env->xregs[6];
arg8 = env->xregs[7];
}
ret = do_freebsd_syscall(env, code, arg1, arg2, arg3,
arg4, arg5, arg6, arg7, arg8);
/*
* The carry bit is cleared for no error; set for error.
* See arm64/arm64/vm_machdep.c cpu_set_syscall_retval()
*/
if (ret >= 0) {
env->CF = 0;
env->xregs[0] = ret;
} else if (ret == -TARGET_ERESTART) {
env->pc -= 4;
break;
} else if (ret != -TARGET_EJUSTRETURN) {
env->CF = 1;
env->xregs[0] = -ret;
}
break;
case EXCP_INTERRUPT:
/* Just indicate that signals should be handle ASAP. */
break;
case EXCP_UDEF:
force_sig_fault(TARGET_SIGILL, TARGET_ILL_ILLOPN, env->pc);
break;
case EXCP_PREFETCH_ABORT:
case EXCP_DATA_ABORT:
/* We should only arrive here with EC in {DATAABORT, INSNABORT}. */
ec = syn_get_ec(env->exception.syndrome);
assert(ec == EC_DATAABORT || ec == EC_INSNABORT);
/* Both EC have the same format for FSC, or close enough. */
fsc = extract32(env->exception.syndrome, 0, 6);
switch (fsc) {
case 0x04 ... 0x07: /* Translation fault, level {0-3} */
si_signo = TARGET_SIGSEGV;
si_code = TARGET_SEGV_MAPERR;
break;
case 0x09 ... 0x0b: /* Access flag fault, level {1-3} */
case 0x0d ... 0x0f: /* Permission fault, level {1-3} */
si_signo = TARGET_SIGSEGV;
si_code = TARGET_SEGV_ACCERR;
break;
case 0x11: /* Synchronous Tag Check Fault */
si_signo = TARGET_SIGSEGV;
si_code = /* TARGET_SEGV_MTESERR; */ TARGET_SEGV_ACCERR;
break;
case 0x21: /* Alignment fault */
si_signo = TARGET_SIGBUS;
si_code = TARGET_BUS_ADRALN;
break;
default:
g_assert_not_reached();
}
force_sig_fault(si_signo, si_code, env->exception.vaddress);
break;
case EXCP_DEBUG:
case EXCP_BKPT:
force_sig_fault(TARGET_SIGTRAP, TARGET_TRAP_BRKPT, env->pc);
break;
case EXCP_ATOMIC:
cpu_exec_step_atomic(cs);
break;
case EXCP_YIELD:
/* nothing to do here for user-mode, just resume guest code */
break;
default:
fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
trapnr);
cpu_dump_state(cs, stderr, 0);
abort();
} /* switch() */
process_pending_signals(env);
/*
* Exception return on AArch64 always clears the exclusive
* monitor, so any return to running guest code implies this.
* A strex (successful or otherwise) also clears the monitor, so
* we don't need to specialcase EXCP_STREX.
*/
env->exclusive_addr = -1;
} /* for (;;) */
}
/* See arm64/arm64/vm_machdep.c cpu_fork() */
static inline void target_cpu_clone_regs(CPUARMState *env, target_ulong newsp)
{
if (newsp) {
env->xregs[31] = newsp;
}
env->regs[0] = 0;
env->regs[1] = 0;
pstate_write(env, 0);
}
static inline void target_cpu_reset(CPUArchState *env)
{
}
#endif /* TARGET_ARCH_CPU_H */
|