1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
/*
* QEMU UFS Logical Unit
*
* Copyright (c) 2023 Samsung Electronics Co., Ltd. All rights reserved.
*
* Written by Jeuk Kim <jeuk20.kim@samsung.com>
*
* This code is licensed under the GNU GPL v2 or later.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qapi/error.h"
#include "qemu/memalign.h"
#include "hw/scsi/scsi.h"
#include "scsi/constants.h"
#include "system/block-backend.h"
#include "qemu/cutils.h"
#include "trace.h"
#include "ufs.h"
#define SCSI_COMMAND_FAIL (-1)
static void ufs_build_upiu_sense_data(UfsRequest *req, uint8_t *sense,
uint32_t sense_len)
{
req->rsp_upiu.sr.sense_data_len = cpu_to_be16(sense_len);
assert(sense_len <= SCSI_SENSE_LEN);
memcpy(req->rsp_upiu.sr.sense_data, sense, sense_len);
}
static void ufs_build_scsi_response_upiu(UfsRequest *req, uint8_t *sense,
uint32_t sense_len,
uint32_t transfered_len,
int16_t status)
{
uint32_t expected_len = be32_to_cpu(req->req_upiu.sc.exp_data_transfer_len);
uint8_t flags = 0, response = UFS_COMMAND_RESULT_SUCCESS;
uint16_t data_segment_length;
if (expected_len > transfered_len) {
req->rsp_upiu.sr.residual_transfer_count =
cpu_to_be32(expected_len - transfered_len);
flags |= UFS_UPIU_FLAG_UNDERFLOW;
} else if (expected_len < transfered_len) {
req->rsp_upiu.sr.residual_transfer_count =
cpu_to_be32(transfered_len - expected_len);
flags |= UFS_UPIU_FLAG_OVERFLOW;
}
if (status != 0) {
ufs_build_upiu_sense_data(req, sense, sense_len);
response = UFS_COMMAND_RESULT_FAIL;
}
data_segment_length =
cpu_to_be16(sense_len + sizeof(req->rsp_upiu.sr.sense_data_len));
ufs_build_upiu_header(req, UFS_UPIU_TRANSACTION_RESPONSE, flags, response,
status, data_segment_length);
}
static void ufs_scsi_command_complete(SCSIRequest *scsi_req, size_t resid)
{
UfsRequest *req = scsi_req->hba_private;
int16_t status = scsi_req->status;
uint32_t transfered_len = scsi_req->cmd.xfer - resid;
ufs_build_scsi_response_upiu(req, scsi_req->sense, scsi_req->sense_len,
transfered_len, status);
ufs_complete_req(req, UFS_REQUEST_SUCCESS);
scsi_req->hba_private = NULL;
scsi_req_unref(scsi_req);
}
static QEMUSGList *ufs_get_sg_list(SCSIRequest *scsi_req)
{
UfsRequest *req = scsi_req->hba_private;
return req->sg;
}
static const struct SCSIBusInfo ufs_scsi_info = {
.tcq = true,
.max_target = 0,
.max_lun = UFS_MAX_LUS,
.max_channel = 0,
.get_sg_list = ufs_get_sg_list,
.complete = ufs_scsi_command_complete,
};
static int ufs_emulate_report_luns(UfsRequest *req, uint8_t *outbuf,
uint32_t outbuf_len)
{
UfsHc *u = req->hc;
int len = 0;
/* TODO: Support for cases where SELECT REPORT is 1 and 2 */
if (req->req_upiu.sc.cdb[2] != 0) {
return SCSI_COMMAND_FAIL;
}
len += 8;
for (uint8_t lun = 0; lun < UFS_MAX_LUS; ++lun) {
if (u->lus[lun]) {
if (len + 8 > outbuf_len) {
break;
}
memset(outbuf + len, 0, 8);
outbuf[len] = 0;
outbuf[len + 1] = lun;
len += 8;
}
}
/* store the LUN list length */
stl_be_p(outbuf, len - 8);
return len;
}
static int ufs_scsi_emulate_vpd_page(UfsRequest *req, uint8_t *outbuf,
uint32_t outbuf_len)
{
uint8_t page_code = req->req_upiu.sc.cdb[2];
int start, buflen = 0;
outbuf[buflen++] = TYPE_WLUN;
outbuf[buflen++] = page_code;
outbuf[buflen++] = 0x00;
outbuf[buflen++] = 0x00;
start = buflen;
switch (page_code) {
case 0x00: /* Supported page codes, mandatory */
{
outbuf[buflen++] = 0x00; /* list of supported pages (this page) */
outbuf[buflen++] = 0x87; /* mode page policy */
break;
}
case 0x87: /* Mode Page Policy, mandatory */
{
outbuf[buflen++] = 0x3f; /* apply to all mode pages and subpages */
outbuf[buflen++] = 0xff;
outbuf[buflen++] = 0; /* shared */
outbuf[buflen++] = 0;
break;
}
default:
return SCSI_COMMAND_FAIL;
}
/* done with EVPD */
assert(buflen - start <= 255);
outbuf[start - 1] = buflen - start;
return buflen;
}
static int ufs_emulate_wlun_inquiry(UfsRequest *req, uint8_t *outbuf,
uint32_t outbuf_len)
{
if (outbuf_len < SCSI_INQUIRY_LEN) {
return 0;
}
if (req->req_upiu.sc.cdb[1] & 0x1) {
/* Vital product data */
return ufs_scsi_emulate_vpd_page(req, outbuf, outbuf_len);
}
/* Standard INQUIRY data */
if (req->req_upiu.sc.cdb[2] != 0) {
return SCSI_COMMAND_FAIL;
}
outbuf[0] = TYPE_WLUN;
outbuf[1] = 0;
outbuf[2] = 0x6; /* SPC-4 */
outbuf[3] = 0x2;
outbuf[4] = 31;
outbuf[5] = 0;
outbuf[6] = 0;
outbuf[7] = 0x2;
strpadcpy((char *)&outbuf[8], 8, "QEMU", ' ');
strpadcpy((char *)&outbuf[16], 16, "QEMU UFS", ' ');
memset(&outbuf[32], 0, 4);
return SCSI_INQUIRY_LEN;
}
static UfsReqResult ufs_emulate_scsi_cmd(UfsLu *lu, UfsRequest *req)
{
uint8_t lun = lu->lun;
uint8_t outbuf[4096];
uint8_t sense_buf[UFS_SENSE_SIZE];
uint8_t scsi_status;
int len = 0;
switch (req->req_upiu.sc.cdb[0]) {
case REPORT_LUNS:
len = ufs_emulate_report_luns(req, outbuf, sizeof(outbuf));
if (len == SCSI_COMMAND_FAIL) {
scsi_build_sense(sense_buf, SENSE_CODE(INVALID_FIELD));
scsi_status = CHECK_CONDITION;
} else {
scsi_status = GOOD;
}
break;
case INQUIRY:
len = ufs_emulate_wlun_inquiry(req, outbuf, sizeof(outbuf));
if (len == SCSI_COMMAND_FAIL) {
scsi_build_sense(sense_buf, SENSE_CODE(INVALID_FIELD));
scsi_status = CHECK_CONDITION;
} else {
scsi_status = GOOD;
}
break;
case REQUEST_SENSE:
/* Just return no sense data */
len = scsi_build_sense_buf(outbuf, sizeof(outbuf), SENSE_CODE(NO_SENSE),
true);
scsi_status = GOOD;
break;
case START_STOP:
/* TODO: Revisit it when Power Management is implemented */
if (lun == UFS_UPIU_UFS_DEVICE_WLUN) {
scsi_status = GOOD;
break;
}
/* fallthrough */
default:
scsi_build_sense(sense_buf, SENSE_CODE(INVALID_OPCODE));
scsi_status = CHECK_CONDITION;
}
len = MIN(len, (int)req->data_len);
if (scsi_status == GOOD && len > 0 &&
dma_buf_read(outbuf, len, NULL, req->sg, MEMTXATTRS_UNSPECIFIED) !=
MEMTX_OK) {
return UFS_REQUEST_FAIL;
}
ufs_build_scsi_response_upiu(req, sense_buf, sizeof(sense_buf), len,
scsi_status);
return UFS_REQUEST_SUCCESS;
}
static UfsReqResult ufs_process_scsi_cmd(UfsLu *lu, UfsRequest *req)
{
uint8_t task_tag = req->req_upiu.header.task_tag;
/*
* Each ufs-lu has its own independent virtual SCSI bus. Therefore, we can't
* use scsi_target_emulate_report_luns() which gets all lu information over
* the SCSI bus. Therefore, we use ufs_emulate_scsi_cmd() like the
* well-known lu.
*/
if (req->req_upiu.sc.cdb[0] == REPORT_LUNS) {
return ufs_emulate_scsi_cmd(lu, req);
}
SCSIRequest *scsi_req =
scsi_req_new(lu->scsi_dev, task_tag, lu->lun, req->req_upiu.sc.cdb,
UFS_CDB_SIZE, req);
uint32_t len = scsi_req_enqueue(scsi_req);
if (len) {
scsi_req_continue(scsi_req);
}
return UFS_REQUEST_NO_COMPLETE;
}
static const Property ufs_lu_props[] = {
DEFINE_PROP_DRIVE("drive", UfsLu, conf.blk),
DEFINE_PROP_UINT8("lun", UfsLu, lun, 0),
};
static bool ufs_add_lu(UfsHc *u, UfsLu *lu, Error **errp)
{
BlockBackend *blk = lu->conf.blk;
int64_t brdv_len = blk_getlength(blk);
uint64_t raw_dev_cap =
be64_to_cpu(u->geometry_desc.total_raw_device_capacity);
if (u->device_desc.number_lu >= UFS_MAX_LUS) {
error_setg(errp, "ufs host controller has too many logical units.");
return false;
}
if (u->lus[lu->lun] != NULL) {
error_setg(errp, "ufs logical unit %d already exists.", lu->lun);
return false;
}
u->lus[lu->lun] = lu;
u->device_desc.number_lu++;
raw_dev_cap += (brdv_len >> UFS_GEOMETRY_CAPACITY_SHIFT);
u->geometry_desc.total_raw_device_capacity = cpu_to_be64(raw_dev_cap);
return true;
}
void ufs_init_wlu(UfsLu *wlu, uint8_t wlun)
{
wlu->lun = wlun;
wlu->scsi_op = &ufs_emulate_scsi_cmd;
}
static void ufs_init_lu(UfsLu *lu)
{
BlockBackend *blk = lu->conf.blk;
int64_t brdv_len = blk_getlength(blk);
memset(&lu->unit_desc, 0, sizeof(lu->unit_desc));
lu->unit_desc.length = sizeof(UnitDescriptor);
lu->unit_desc.descriptor_idn = UFS_QUERY_DESC_IDN_UNIT;
lu->unit_desc.lu_enable = 0x01;
lu->unit_desc.logical_block_size = UFS_BLOCK_SIZE_SHIFT;
lu->unit_desc.unit_index = lu->lun;
lu->unit_desc.logical_block_count =
cpu_to_be64(brdv_len / (1 << lu->unit_desc.logical_block_size));
lu->scsi_op = &ufs_process_scsi_cmd;
}
static bool ufs_lu_check_constraints(UfsLu *lu, Error **errp)
{
if (!lu->conf.blk) {
error_setg(errp, "drive property not set");
return false;
}
if (lu->lun >= UFS_MAX_LUS) {
error_setg(errp, "lun must be between 0 and %d", UFS_MAX_LUS - 1);
return false;
}
return true;
}
static void ufs_init_scsi_device(UfsLu *lu, BlockBackend *blk, Error **errp)
{
DeviceState *scsi_dev;
scsi_bus_init(&lu->bus, sizeof(lu->bus), DEVICE(lu), &ufs_scsi_info);
blk_ref(blk);
blk_detach_dev(blk, DEVICE(lu));
lu->conf.blk = NULL;
/*
* The ufs-lu is the device that is wrapping the scsi-hd. It owns a virtual
* SCSI bus that serves the scsi-hd.
*/
scsi_dev = qdev_new("scsi-hd");
object_property_add_child(OBJECT(&lu->bus), "ufs-scsi", OBJECT(scsi_dev));
qdev_prop_set_uint32(scsi_dev, "physical_block_size", UFS_BLOCK_SIZE);
qdev_prop_set_uint32(scsi_dev, "logical_block_size", UFS_BLOCK_SIZE);
qdev_prop_set_uint32(scsi_dev, "scsi-id", 0);
qdev_prop_set_uint32(scsi_dev, "lun", lu->lun);
if (!qdev_prop_set_drive_err(scsi_dev, "drive", blk, errp)) {
object_unparent(OBJECT(scsi_dev));
return;
}
if (!qdev_realize_and_unref(scsi_dev, &lu->bus.qbus, errp)) {
object_unparent(OBJECT(scsi_dev));
return;
}
blk_unref(blk);
lu->scsi_dev = SCSI_DEVICE(scsi_dev);
}
static void ufs_lu_realize(DeviceState *dev, Error **errp)
{
UfsLu *lu = DO_UPCAST(UfsLu, qdev, dev);
BusState *s = qdev_get_parent_bus(dev);
UfsHc *u = UFS(s->parent);
BlockBackend *blk = lu->conf.blk;
if (!ufs_lu_check_constraints(lu, errp)) {
return;
}
if (!blk) {
error_setg(errp, "drive property not set");
return;
}
if (!blkconf_blocksizes(&lu->conf, errp)) {
return;
}
if (!blkconf_apply_backend_options(&lu->conf, !blk_supports_write_perm(blk),
true, errp)) {
return;
}
ufs_init_lu(lu);
if (!ufs_add_lu(u, lu, errp)) {
return;
}
ufs_init_scsi_device(lu, blk, errp);
}
static void ufs_lu_unrealize(DeviceState *dev)
{
UfsLu *lu = DO_UPCAST(UfsLu, qdev, dev);
if (lu->scsi_dev) {
object_unref(OBJECT(lu->scsi_dev));
lu->scsi_dev = NULL;
}
}
static void ufs_lu_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = ufs_lu_realize;
dc->unrealize = ufs_lu_unrealize;
dc->bus_type = TYPE_UFS_BUS;
device_class_set_props(dc, ufs_lu_props);
dc->desc = "Virtual UFS logical unit";
}
static const TypeInfo ufs_lu_info = {
.name = TYPE_UFS_LU,
.parent = TYPE_DEVICE,
.class_init = ufs_lu_class_init,
.instance_size = sizeof(UfsLu),
};
static void ufs_lu_register_types(void)
{
type_register_static(&ufs_lu_info);
}
type_init(ufs_lu_register_types)
|