1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
|
/*
* QEMU live migration
*
* Copyright IBM, Corp. 2008
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#ifndef QEMU_MIGRATION_H
#define QEMU_MIGRATION_H
#include "exec/cpu-common.h"
#include "hw/qdev-core.h"
#include "qapi/qapi-types-migration.h"
#include "qobject/json-writer.h"
#include "qemu/thread.h"
#include "qemu/coroutine.h"
#include "io/channel.h"
#include "io/channel-buffer.h"
#include "net/announce.h"
#include "qom/object.h"
#include "postcopy-ram.h"
#include "system/runstate.h"
#include "migration/misc.h"
#define MIGRATION_THREAD_SNAPSHOT "mig/snapshot"
#define MIGRATION_THREAD_DIRTY_RATE "mig/dirtyrate"
#define MIGRATION_THREAD_SRC_MAIN "mig/src/main"
#define MIGRATION_THREAD_SRC_MULTIFD "mig/src/send_%d"
#define MIGRATION_THREAD_SRC_RETURN "mig/src/return"
#define MIGRATION_THREAD_SRC_TLS "mig/src/tls"
#define MIGRATION_THREAD_DST_COLO "mig/dst/colo"
#define MIGRATION_THREAD_DST_MULTIFD "mig/dst/recv_%d"
#define MIGRATION_THREAD_DST_FAULT "mig/dst/fault"
#define MIGRATION_THREAD_DST_LISTEN "mig/dst/listen"
#define MIGRATION_THREAD_DST_PREEMPT "mig/dst/preempt"
struct PostcopyBlocktimeContext;
typedef struct ThreadPool ThreadPool;
#define MIGRATION_RESUME_ACK_VALUE (1)
/*
* 1<<6=64 pages -> 256K chunk when page size is 4K. This gives us
* the benefit that all the chunks are 64 pages aligned then the
* bitmaps are always aligned to LONG.
*/
#define CLEAR_BITMAP_SHIFT_MIN 6
/*
* 1<<18=256K pages -> 1G chunk when page size is 4K. This is the
* default value to use if no one specified.
*/
#define CLEAR_BITMAP_SHIFT_DEFAULT 18
/*
* 1<<31=2G pages -> 8T chunk when page size is 4K. This should be
* big enough and make sure we won't overflow easily.
*/
#define CLEAR_BITMAP_SHIFT_MAX 31
/* This is an abstraction of a "temp huge page" for postcopy's purpose */
typedef struct {
/*
* This points to a temporary huge page as a buffer for UFFDIO_COPY. It's
* mmap()ed and needs to be freed when cleanup.
*/
void *tmp_huge_page;
/*
* This points to the host page we're going to install for this temp page.
* It tells us after we've received the whole page, where we should put it.
*/
void *host_addr;
/* Number of small pages copied (in size of TARGET_PAGE_SIZE) */
unsigned int target_pages;
/* Whether this page contains all zeros */
bool all_zero;
} PostcopyTmpPage;
typedef enum {
PREEMPT_THREAD_NONE = 0,
PREEMPT_THREAD_CREATED,
PREEMPT_THREAD_QUIT,
} PreemptThreadStatus;
/* State for the incoming migration */
struct MigrationIncomingState {
QEMUFile *from_src_file;
/* Previously received RAM's RAMBlock pointer */
RAMBlock *last_recv_block[RAM_CHANNEL_MAX];
/* A hook to allow cleanup at the end of incoming migration */
void *transport_data;
void (*transport_cleanup)(void *data);
/*
* Used to sync thread creations. Note that we can't create threads in
* parallel with this sem.
*/
QemuSemaphore thread_sync_sem;
/*
* Free at the start of the main state load, set as the main thread finishes
* loading state.
*/
QemuEvent main_thread_load_event;
/* For network announces */
AnnounceTimer announce_timer;
size_t largest_page_size;
bool have_fault_thread;
QemuThread fault_thread;
/* Set this when we want the fault thread to quit */
bool fault_thread_quit;
bool have_listen_thread;
QemuThread listen_thread;
/* For the kernel to send us notifications */
int userfault_fd;
/* To notify the fault_thread to wake, e.g., when need to quit */
int userfault_event_fd;
QEMUFile *to_src_file;
QemuMutex rp_mutex; /* We send replies from multiple threads */
/* RAMBlock of last request sent to source */
RAMBlock *last_rb;
/*
* Number of postcopy channels including the default precopy channel, so
* vanilla postcopy will only contain one channel which contain both
* precopy and postcopy streams.
*
* This is calculated when the src requests to enable postcopy but before
* it starts. Its value can depend on e.g. whether postcopy preemption is
* enabled.
*/
unsigned int postcopy_channels;
/* QEMUFile for postcopy only; it'll be handled by a separate thread */
QEMUFile *postcopy_qemufile_dst;
/*
* When postcopy_qemufile_dst is properly setup, this sem is posted.
* One can wait on this semaphore to wait until the preempt channel is
* properly setup.
*/
QemuSemaphore postcopy_qemufile_dst_done;
/* Postcopy priority thread is used to receive postcopy requested pages */
QemuThread postcopy_prio_thread;
/*
* Always set by the main vm load thread only, but can be read by the
* postcopy preempt thread. "volatile" makes sure all reads will be
* up-to-date across cores.
*/
volatile PreemptThreadStatus preempt_thread_status;
/*
* Used to sync between the ram load main thread and the fast ram load
* thread. It protects postcopy_qemufile_dst, which is the postcopy
* fast channel.
*
* The ram fast load thread will take it mostly for the whole lifecycle
* because it needs to continuously read data from the channel, and
* it'll only release this mutex if postcopy is interrupted, so that
* the ram load main thread will take this mutex over and properly
* release the broken channel.
*/
QemuMutex postcopy_prio_thread_mutex;
/*
* An array of temp host huge pages to be used, one for each postcopy
* channel.
*/
PostcopyTmpPage *postcopy_tmp_pages;
/* This is shared for all postcopy channels */
void *postcopy_tmp_zero_page;
/* PostCopyFD's for external userfaultfds & handlers of shared memory */
GArray *postcopy_remote_fds;
MigrationStatus state;
/*
* The incoming migration coroutine, non-NULL during qemu_loadvm_state().
* Used to wake the migration incoming coroutine from rdma code. How much is
* it safe - it's a question.
*/
Coroutine *loadvm_co;
/* The coroutine we should enter (back) after failover */
Coroutine *colo_incoming_co;
QemuSemaphore colo_incoming_sem;
/* Optional load threads pool and its thread exit request flag */
ThreadPool *load_threads;
bool load_threads_abort;
/*
* PostcopyBlocktimeContext to keep information for postcopy
* live migration, to calculate vCPU block time
* */
struct PostcopyBlocktimeContext *blocktime_ctx;
/* notify PAUSED postcopy incoming migrations to try to continue */
QemuSemaphore postcopy_pause_sem_dst;
QemuSemaphore postcopy_pause_sem_fault;
/*
* This semaphore is used to allow the ram fast load thread (only when
* postcopy preempt is enabled) fall into sleep when there's network
* interruption detected. When the recovery is done, the main load
* thread will kick the fast ram load thread using this semaphore.
*/
QemuSemaphore postcopy_pause_sem_fast_load;
/* List of listening socket addresses */
SocketAddressList *socket_address_list;
/* A tree of pages that we requested to the source VM */
GTree *page_requested;
/*
* For postcopy only, count the number of requested page faults that
* still haven't been resolved.
*/
int page_requested_count;
/*
* The mutex helps to maintain the requested pages that we sent to the
* source, IOW, to guarantee coherent between the page_requests tree and
* the per-ramblock receivedmap. Note! This does not guarantee consistency
* of the real page copy procedures (using UFFDIO_[ZERO]COPY). E.g., even
* if one bit in receivedmap is cleared, UFFDIO_COPY could have happened
* for that page already. This is intended so that the mutex won't
* serialize and blocked by slow operations like UFFDIO_* ioctls. However
* this should be enough to make sure the page_requested tree always
* contains valid information.
*/
QemuMutex page_request_mutex;
/*
* If postcopy preempt is enabled, there is a chance that the main
* thread finished loading its data before the preempt channel has
* finished loading the urgent pages. If that happens, the two threads
* will use this condvar to synchronize, so the main thread will always
* wait until all pages received.
*/
QemuCond page_request_cond;
/*
* Number of devices that have yet to approve switchover. When this reaches
* zero an ACK that it's OK to do switchover is sent to the source. No lock
* is needed as this field is updated serially.
*/
unsigned int switchover_ack_pending_num;
/* Do exit on incoming migration failure */
bool exit_on_error;
};
MigrationIncomingState *migration_incoming_get_current(void);
void migration_incoming_state_destroy(void);
void migration_incoming_transport_cleanup(MigrationIncomingState *mis);
/*
* Functions to work with blocktime context
*/
void fill_destination_postcopy_migration_info(MigrationInfo *info);
#define TYPE_MIGRATION "migration"
typedef struct MigrationClass MigrationClass;
DECLARE_OBJ_CHECKERS(MigrationState, MigrationClass,
MIGRATION_OBJ, TYPE_MIGRATION)
struct MigrationClass {
/*< private >*/
DeviceClass parent_class;
};
struct MigrationState {
/*< private >*/
DeviceState parent_obj;
/*< public >*/
QemuThread thread;
/* Protected by qemu_file_lock */
QEMUFile *to_dst_file;
/* Postcopy specific transfer channel */
QEMUFile *postcopy_qemufile_src;
/*
* It is posted when the preempt channel is established. Note: this is
* used for both the start or recover of a postcopy migration. We'll
* post to this sem every time a new preempt channel is created in the
* main thread, and we keep post() and wait() in pair.
*/
QemuSemaphore postcopy_qemufile_src_sem;
QIOChannelBuffer *bioc;
/*
* Protects to_dst_file/from_dst_file pointers. We need to make sure we
* won't yield or hang during the critical section, since this lock will be
* used in OOB command handler.
*/
QemuMutex qemu_file_lock;
/*
* Used to allow urgent requests to override rate limiting.
*/
QemuSemaphore rate_limit_sem;
/* pages already send at the beginning of current iteration */
uint64_t iteration_initial_pages;
/* pages transferred per second */
double pages_per_second;
/* bytes already send at the beginning of current iteration */
uint64_t iteration_initial_bytes;
/* time at the start of current iteration */
int64_t iteration_start_time;
/*
* The final stage happens when the remaining data is smaller than
* this threshold; it's calculated from the requested downtime and
* measured bandwidth, or avail-switchover-bandwidth if specified.
*/
uint64_t threshold_size;
/* params from 'migrate-set-parameters' */
MigrationParameters parameters;
MigrationStatus state;
/* State related to return path */
struct {
/* Protected by qemu_file_lock */
QEMUFile *from_dst_file;
QemuThread rp_thread;
/*
* We can also check non-zero of rp_thread, but there's no "official"
* way to do this, so this bool makes it slightly more elegant.
* Checking from_dst_file for this is racy because from_dst_file will
* be cleared in the rp_thread!
*/
bool rp_thread_created;
/*
* Used to synchronize between migration main thread and return
* path thread. The migration thread can wait() on this sem, while
* other threads (e.g., return path thread) can kick it using a
* post().
*/
QemuSemaphore rp_sem;
/*
* We post to this when we got one PONG from dest. So far it's an
* easy way to know the main channel has successfully established
* on dest QEMU.
*/
QemuSemaphore rp_pong_acks;
} rp_state;
double mbps;
/* Timestamp when recent migration starts (ms) */
int64_t start_time;
/* Total time used by latest migration (ms) */
int64_t total_time;
/* Timestamp when VM is down (ms) to migrate the last stuff */
int64_t downtime_start;
int64_t downtime;
int64_t expected_downtime;
bool capabilities[MIGRATION_CAPABILITY__MAX];
int64_t setup_time;
/*
* State before stopping the vm by vm_stop_force_state().
* If migration is interrupted by any reason, we need to continue
* running the guest on source if it was running or restore its stopped
* state.
*/
RunState vm_old_state;
/* Flag set once the migration has been asked to enter postcopy */
bool start_postcopy;
/* Flag set once the migration thread is running (and needs joining) */
bool migration_thread_running;
/* Migration is waiting for guest to unplug device */
QemuSemaphore wait_unplug_sem;
/* Migration is paused due to pause-before-switchover */
QemuSemaphore pause_sem;
/* The semaphore is used to notify COLO thread that failover is finished */
QemuSemaphore colo_exit_sem;
/* The event is used to notify COLO thread to do checkpoint */
QemuEvent colo_checkpoint_event;
int64_t colo_checkpoint_time;
QEMUTimer *colo_delay_timer;
/* The first error that has occurred.
We used the mutex to be able to return the 1st error message */
Error *error;
/* mutex to protect errp */
QemuMutex error_mutex;
/*
* Global switch on whether we need to store the global state
* during migration.
*/
bool store_global_state;
/* Whether we send QEMU_VM_CONFIGURATION during migration */
bool send_configuration;
/* Whether we send section footer during migration */
bool send_section_footer;
/* Whether we send switchover start notification during migration */
bool send_switchover_start;
/* Needed by postcopy-pause state */
QemuSemaphore postcopy_pause_sem;
/*
* This variable only affects behavior when postcopy preempt mode is
* enabled.
*
* When set:
*
* - postcopy preempt src QEMU instance will generate an EOS message at
* the end of migration to shut the preempt channel on dest side.
*
* - postcopy preempt channel will be created at the setup phase on src
QEMU.
*
* When clear:
*
* - postcopy preempt src QEMU instance will _not_ generate an EOS
* message at the end of migration, the dest qemu will shutdown the
* channel itself.
*
* - postcopy preempt channel will be created at the switching phase
* from precopy -> postcopy (to avoid race condition of misordered
* creation of channels).
*
* NOTE: See message-id <ZBoShWArKDPpX/D7@work-vm> on qemu-devel
* mailing list for more information on the possible race. Everyone
* should probably just keep this value untouched after set by the
* machine type (or the default).
*/
bool preempt_pre_7_2;
/*
* flush every channel after each section sent.
*
* This assures that we can't mix pages from one iteration through
* ram pages with pages for the following iteration. We really
* only need to do this flush after we have go through all the
* dirty pages. For historical reasons, we do that after each
* section. This is suboptimal (we flush too many times).
* Default value is false. (since 8.1)
*/
bool multifd_flush_after_each_section;
/*
* This variable only makes sense when set on the machine that is
* the destination of a multifd migration with TLS enabled. It
* affects the behavior of the last send->recv iteration with
* regards to termination of the TLS session.
*
* When set:
*
* - the destination QEMU instance can expect to never get a
* GNUTLS_E_PREMATURE_TERMINATION error. Manifested as the error
* message: "The TLS connection was non-properly terminated".
*
* When clear:
*
* - the destination QEMU instance can expect to see a
* GNUTLS_E_PREMATURE_TERMINATION error in any multifd channel
* whenever the last recv() call of that channel happens after
* the source QEMU instance has already issued shutdown() on the
* channel.
*
* Commit 637280aeb2 (since 9.1) introduced a side effect that
* causes the destination instance to not be affected by the
* premature termination, while commit 1d457daf86 (since 10.0)
* causes the premature termination condition to be once again
* reachable.
*
* NOTE: Regardless of the state of this option, a premature
* termination of the TLS connection might happen due to error at
* any moment prior to the last send->recv iteration.
*/
bool multifd_clean_tls_termination;
/*
* This decides the size of guest memory chunk that will be used
* to track dirty bitmap clearing. The size of memory chunk will
* be GUEST_PAGE_SIZE << N. Say, N=0 means we will clear dirty
* bitmap for each page to send (1<<0=1); N=10 means we will clear
* dirty bitmap only once for 1<<10=1K continuous guest pages
* (which is in 4M chunk).
*/
uint8_t clear_bitmap_shift;
/*
* This save hostname when out-going migration starts
*/
char *hostname;
/* QEMU_VM_VMDESCRIPTION content filled for all non-iterable devices. */
JSONWriter *vmdesc;
/*
* Indicates whether an ACK from the destination that it's OK to do
* switchover has been received.
*/
bool switchover_acked;
/* Is this a rdma migration */
bool rdma_migration;
GSource *hup_source;
};
void migrate_set_state(MigrationStatus *state, MigrationStatus old_state,
MigrationStatus new_state);
void migration_fd_process_incoming(QEMUFile *f);
void migration_ioc_process_incoming(QIOChannel *ioc, Error **errp);
void migration_incoming_process(void);
bool migration_has_all_channels(void);
void migrate_set_error(MigrationState *s, const Error *error);
bool migrate_has_error(MigrationState *s);
void migration_connect(MigrationState *s, Error *error_in);
int migration_call_notifiers(MigrationState *s, MigrationEventType type,
Error **errp);
int migrate_init(MigrationState *s, Error **errp);
bool migration_is_blocked(Error **errp);
/* True if outgoing migration has entered postcopy phase */
bool migration_in_postcopy(void);
bool migration_postcopy_is_alive(MigrationStatus state);
MigrationState *migrate_get_current(void);
bool migration_has_failed(MigrationState *);
bool migrate_mode_is_cpr(MigrationState *);
uint64_t ram_get_total_transferred_pages(void);
/* Sending on the return path - generic and then for each message type */
void migrate_send_rp_shut(MigrationIncomingState *mis,
uint32_t value);
void migrate_send_rp_pong(MigrationIncomingState *mis,
uint32_t value);
int migrate_send_rp_req_pages(MigrationIncomingState *mis, RAMBlock *rb,
ram_addr_t start, uint64_t haddr);
int migrate_send_rp_message_req_pages(MigrationIncomingState *mis,
RAMBlock *rb, ram_addr_t start);
void migrate_send_rp_recv_bitmap(MigrationIncomingState *mis,
char *block_name);
void migrate_send_rp_resume_ack(MigrationIncomingState *mis, uint32_t value);
int migrate_send_rp_switchover_ack(MigrationIncomingState *mis);
void dirty_bitmap_mig_before_vm_start(void);
void dirty_bitmap_mig_cancel_outgoing(void);
void dirty_bitmap_mig_cancel_incoming(void);
bool check_dirty_bitmap_mig_alias_map(const BitmapMigrationNodeAliasList *bbm,
Error **errp);
void migrate_add_address(SocketAddress *address);
int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque);
#define qemu_ram_foreach_block \
#warning "Use foreach_not_ignored_block in migration code"
void migration_make_urgent_request(void);
void migration_consume_urgent_request(void);
bool migration_rate_limit(void);
void migration_bh_schedule(QEMUBHFunc *cb, void *opaque);
void migration_cancel(void);
void migration_populate_vfio_info(MigrationInfo *info);
void migration_reset_vfio_bytes_transferred(void);
void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page);
/*
* Migration thread waiting for return path thread. Return non-zero if an
* error is detected.
*/
int migration_rp_wait(MigrationState *s);
/*
* Kick the migration thread waiting for return path messages. NOTE: the
* name can be slightly confusing (when read as "kick the rp thread"), just
* to remember the target is always the migration thread.
*/
void migration_rp_kick(MigrationState *s);
void migration_bitmap_sync_precopy(bool last_stage);
/* migration/block-dirty-bitmap.c */
void dirty_bitmap_mig_init(void);
bool should_send_vmdesc(void);
#endif
|