1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
|
// SPDX-License-Identifier: Apache-2.0
/*
* Directly control CPU cores/threads. SRESET, special wakeup, etc
*
* Copyright 2017-2019 IBM Corp.
*/
#include <direct-controls.h>
#include <skiboot.h>
#include <opal.h>
#include <cpu.h>
#include <xscom.h>
#include <xscom-p8-regs.h>
#include <xscom-p9-regs.h>
#include <xscom-p10-regs.h>
#include <timebase.h>
#include <chip.h>
/**************** mambo direct controls ****************/
extern unsigned long callthru_tcl(const char *str, int len);
static void mambo_sreset_cpu(struct cpu_thread *cpu)
{
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t core_id = pir_to_core_id(cpu->pir);
uint32_t thread_id = pir_to_thread_id(cpu->pir);
char tcl_cmd[50];
snprintf(tcl_cmd, sizeof(tcl_cmd),
"mysim cpu %i:%i:%i start_thread 0x100",
chip_id, core_id, thread_id);
callthru_tcl(tcl_cmd, strlen(tcl_cmd));
}
static void mambo_stop_cpu(struct cpu_thread *cpu)
{
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t core_id = pir_to_core_id(cpu->pir);
uint32_t thread_id = pir_to_thread_id(cpu->pir);
char tcl_cmd[50];
snprintf(tcl_cmd, sizeof(tcl_cmd),
"mysim cpu %i:%i:%i stop_thread",
chip_id, core_id, thread_id);
callthru_tcl(tcl_cmd, strlen(tcl_cmd));
}
/**************** POWER8 direct controls ****************/
static int p8_core_set_special_wakeup(struct cpu_thread *cpu)
{
uint64_t val, poll_target, stamp;
uint32_t core_id;
int rc;
/*
* Note: HWP checks for checkstops, but I assume we don't need to
* as we wouldn't be running if one was present
*/
/* Grab core ID once */
core_id = pir_to_core_id(cpu->pir);
prlog(PR_DEBUG, "RESET Waking up core 0x%x\n", core_id);
/*
* The original HWp reads the XSCOM first but ignores the result
* and error, let's do the same until I know for sure that is
* not necessary
*/
xscom_read(cpu->chip_id,
XSCOM_ADDR_P8_EX_SLAVE(core_id, EX_PM_SPECIAL_WAKEUP_PHYP),
&val);
/* Then we write special wakeup */
rc = xscom_write(cpu->chip_id,
XSCOM_ADDR_P8_EX_SLAVE(core_id,
EX_PM_SPECIAL_WAKEUP_PHYP),
PPC_BIT(0));
if (rc) {
prerror("RESET: XSCOM error %d asserting special"
" wakeup on 0x%x\n", rc, cpu->pir);
return rc;
}
/*
* HWP uses the history for Perf register here, dunno why it uses
* that one instead of the pHyp one, maybe to avoid clobbering it...
*
* In any case, it does that to check for run/nap vs.sleep/winkle/other
* to decide whether to poll on checkstop or not. Since we don't deal
* with checkstop conditions here, we ignore that part.
*/
/*
* Now poll for completion of special wakeup. The HWP is nasty here,
* it will poll at 5ms intervals for up to 200ms. This is not quite
* acceptable for us at runtime, at least not until we have the
* ability to "context switch" HBRT. In practice, because we don't
* winkle, it will never take that long, so we increase the polling
* frequency to 1us per poll. However we do have to keep the same
* timeout.
*
* We don't use time_wait_ms() either for now as we don't want to
* poll the FSP here.
*/
stamp = mftb();
poll_target = stamp + msecs_to_tb(200);
val = 0;
while (!(val & EX_PM_GP0_SPECIAL_WAKEUP_DONE)) {
/* Wait 1 us */
time_wait_us(1);
/* Read PM state */
rc = xscom_read(cpu->chip_id,
XSCOM_ADDR_P8_EX_SLAVE(core_id, EX_PM_GP0),
&val);
if (rc) {
prerror("RESET: XSCOM error %d reading PM state on"
" 0x%x\n", rc, cpu->pir);
return rc;
}
/* Check timeout */
if (mftb() > poll_target)
break;
}
/* Success ? */
if (val & EX_PM_GP0_SPECIAL_WAKEUP_DONE) {
uint64_t now = mftb();
prlog(PR_TRACE, "RESET: Special wakeup complete after %ld us\n",
tb_to_usecs(now - stamp));
return 0;
}
/*
* We timed out ...
*
* HWP has a complex workaround for HW255321 which affects
* Murano DD1 and Venice DD1. Ignore that for now
*
* Instead we just dump some XSCOMs for error logging
*/
prerror("RESET: Timeout on special wakeup of 0x%0x\n", cpu->pir);
prerror("RESET: PM0 = 0x%016llx\n", val);
val = -1;
xscom_read(cpu->chip_id,
XSCOM_ADDR_P8_EX_SLAVE(core_id, EX_PM_SPECIAL_WAKEUP_PHYP),
&val);
prerror("RESET: SPC_WKUP = 0x%016llx\n", val);
val = -1;
xscom_read(cpu->chip_id,
XSCOM_ADDR_P8_EX_SLAVE(core_id,
EX_PM_IDLE_STATE_HISTORY_PHYP),
&val);
prerror("RESET: HISTORY = 0x%016llx\n", val);
return OPAL_HARDWARE;
}
static int p8_core_clear_special_wakeup(struct cpu_thread *cpu)
{
uint64_t val;
uint32_t core_id;
int rc;
/*
* Note: HWP checks for checkstops, but I assume we don't need to
* as we wouldn't be running if one was present
*/
/* Grab core ID once */
core_id = pir_to_core_id(cpu->pir);
prlog(PR_DEBUG, "RESET: Releasing core 0x%x wakeup\n", core_id);
/*
* The original HWp reads the XSCOM first but ignores the result
* and error, let's do the same until I know for sure that is
* not necessary
*/
xscom_read(cpu->chip_id,
XSCOM_ADDR_P8_EX_SLAVE(core_id, EX_PM_SPECIAL_WAKEUP_PHYP),
&val);
/* Then we write special wakeup */
rc = xscom_write(cpu->chip_id,
XSCOM_ADDR_P8_EX_SLAVE(core_id,
EX_PM_SPECIAL_WAKEUP_PHYP), 0);
if (rc) {
prerror("RESET: XSCOM error %d deasserting"
" special wakeup on 0x%x\n", rc, cpu->pir);
return rc;
}
/*
* The original HWp reads the XSCOM again with the comment
* "This puts an inherent delay in the propagation of the reset
* transition"
*/
xscom_read(cpu->chip_id,
XSCOM_ADDR_P8_EX_SLAVE(core_id, EX_PM_SPECIAL_WAKEUP_PHYP),
&val);
return 0;
}
static int p8_stop_thread(struct cpu_thread *cpu)
{
uint32_t core_id = pir_to_core_id(cpu->pir);
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t thread_id = pir_to_thread_id(cpu->pir);
uint32_t xscom_addr;
xscom_addr = XSCOM_ADDR_P8_EX(core_id,
P8_EX_TCTL_DIRECT_CONTROLS(thread_id));
if (xscom_write(chip_id, xscom_addr, P8_DIRECT_CTL_STOP)) {
prlog(PR_ERR, "Could not stop thread %u:%u:%u:"
" Unable to write EX_TCTL_DIRECT_CONTROLS.\n",
chip_id, core_id, thread_id);
return OPAL_HARDWARE;
}
return OPAL_SUCCESS;
}
static int p8_sreset_thread(struct cpu_thread *cpu)
{
uint32_t core_id = pir_to_core_id(cpu->pir);
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t thread_id = pir_to_thread_id(cpu->pir);
uint32_t xscom_addr;
xscom_addr = XSCOM_ADDR_P8_EX(core_id,
P8_EX_TCTL_DIRECT_CONTROLS(thread_id));
if (xscom_write(chip_id, xscom_addr, P8_DIRECT_CTL_PRENAP)) {
prlog(PR_ERR, "Could not prenap thread %u:%u:%u:"
" Unable to write EX_TCTL_DIRECT_CONTROLS.\n",
chip_id, core_id, thread_id);
return OPAL_HARDWARE;
}
if (xscom_write(chip_id, xscom_addr, P8_DIRECT_CTL_SRESET)) {
prlog(PR_ERR, "Could not sreset thread %u:%u:%u:"
" Unable to write EX_TCTL_DIRECT_CONTROLS.\n",
chip_id, core_id, thread_id);
return OPAL_HARDWARE;
}
return OPAL_SUCCESS;
}
/**************** POWER9 direct controls ****************/
/* Long running instructions may take time to complete. Timeout 100ms */
#define P9_QUIESCE_POLL_INTERVAL 100
#define P9_QUIESCE_TIMEOUT 100000
/* Waking may take up to 5ms for deepest sleep states. Set timeout to 100ms */
#define P9_SPWKUP_POLL_INTERVAL 100
#define P9_SPWKUP_TIMEOUT 100000
/*
* This implements direct control facilities of processor cores and threads
* using scom registers.
*/
static int p9_core_is_gated(struct cpu_thread *cpu)
{
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t core_id = pir_to_core_id(cpu->pir);
uint32_t sshhyp_addr;
uint64_t val;
sshhyp_addr = XSCOM_ADDR_P9_EC_SLAVE(core_id, P9_EC_PPM_SSHHYP);
if (xscom_read(chip_id, sshhyp_addr, &val)) {
prlog(PR_ERR, "Could not query core gated on %u:%u:"
" Unable to read PPM_SSHHYP.\n",
chip_id, core_id);
return OPAL_HARDWARE;
}
return !!(val & P9_CORE_GATED);
}
static int p9_core_set_special_wakeup(struct cpu_thread *cpu)
{
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t core_id = pir_to_core_id(cpu->pir);
uint32_t swake_addr;
uint32_t sshhyp_addr;
uint64_t val;
int i;
swake_addr = XSCOM_ADDR_P9_EC_SLAVE(core_id, EC_PPM_SPECIAL_WKUP_HYP);
sshhyp_addr = XSCOM_ADDR_P9_EC_SLAVE(core_id, P9_EC_PPM_SSHHYP);
if (xscom_write(chip_id, swake_addr, P9_SPWKUP_SET)) {
prlog(PR_ERR, "Could not set special wakeup on %u:%u:"
" Unable to write PPM_SPECIAL_WKUP_HYP.\n",
chip_id, core_id);
goto out_fail;
}
for (i = 0; i < P9_SPWKUP_TIMEOUT / P9_SPWKUP_POLL_INTERVAL; i++) {
if (xscom_read(chip_id, sshhyp_addr, &val)) {
prlog(PR_ERR, "Could not set special wakeup on %u:%u:"
" Unable to read PPM_SSHHYP.\n",
chip_id, core_id);
goto out_fail;
}
if (val & P9_SPECIAL_WKUP_DONE) {
/*
* CORE_GATED will be unset on a successful special
* wakeup of the core which indicates that the core is
* out of stop state. If CORE_GATED is still set then
* raise error.
*/
if (p9_core_is_gated(cpu)) {
/* Deassert spwu for this strange error */
xscom_write(chip_id, swake_addr, 0);
prlog(PR_ERR, "Failed special wakeup on %u:%u"
" as CORE_GATED is set\n",
chip_id, core_id);
goto out_fail;
} else {
return 0;
}
}
time_wait_us(P9_SPWKUP_POLL_INTERVAL);
}
prlog(PR_ERR, "Could not set special wakeup on %u:%u:"
" timeout waiting for SPECIAL_WKUP_DONE.\n",
chip_id, core_id);
out_fail:
/*
* As per the special wakeup protocol we should not de-assert
* the special wakeup on the core until WAKEUP_DONE is set.
* So even on error do not de-assert.
*/
return OPAL_HARDWARE;
}
static int p9_core_clear_special_wakeup(struct cpu_thread *cpu)
{
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t core_id = pir_to_core_id(cpu->pir);
uint32_t swake_addr;
swake_addr = XSCOM_ADDR_P9_EC_SLAVE(core_id, EC_PPM_SPECIAL_WKUP_HYP);
/*
* De-assert special wakeup after a small delay.
* The delay may help avoid problems setting and clearing special
* wakeup back-to-back. This should be confirmed.
*/
time_wait_us(1);
if (xscom_write(chip_id, swake_addr, 0)) {
prlog(PR_ERR, "Could not clear special wakeup on %u:%u:"
" Unable to write PPM_SPECIAL_WKUP_HYP.\n",
chip_id, core_id);
return OPAL_HARDWARE;
}
/*
* Don't wait for de-assert to complete as other components
* could have requested for special wkeup. Wait for 10ms to
* avoid back-to-back asserts
*/
time_wait_us(10000);
return 0;
}
static int p9_thread_quiesced(struct cpu_thread *cpu)
{
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t core_id = pir_to_core_id(cpu->pir);
uint32_t thread_id = pir_to_thread_id(cpu->pir);
uint32_t ras_addr;
uint64_t ras_status;
ras_addr = XSCOM_ADDR_P9_EC(core_id, P9_RAS_STATUS);
if (xscom_read(chip_id, ras_addr, &ras_status)) {
prlog(PR_ERR, "Could not check thread state on %u:%u:"
" Unable to read RAS_STATUS.\n",
chip_id, core_id);
return OPAL_HARDWARE;
}
/*
* This returns true when the thread is quiesced and all
* instructions completed. For sreset this may not be necessary,
* but we may want to use instruction ramming or stepping
* direct controls where it is important.
*/
if ((ras_status & P9_THREAD_QUIESCED(thread_id))
== P9_THREAD_QUIESCED(thread_id))
return 1;
return 0;
}
static int p9_cont_thread(struct cpu_thread *cpu)
{
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t core_id = pir_to_core_id(cpu->pir);
uint32_t thread_id = pir_to_thread_id(cpu->pir);
uint32_t cts_addr;
uint32_t ti_addr;
uint32_t dctl_addr;
uint64_t core_thread_state;
uint64_t thread_info;
bool active, stop;
int rc;
rc = p9_thread_quiesced(cpu);
if (rc < 0)
return rc;
if (!rc) {
prlog(PR_ERR, "Could not cont thread %u:%u:%u:"
" Thread is not quiesced.\n",
chip_id, core_id, thread_id);
return OPAL_BUSY;
}
cts_addr = XSCOM_ADDR_P9_EC(core_id, P9_CORE_THREAD_STATE);
ti_addr = XSCOM_ADDR_P9_EC(core_id, P9_THREAD_INFO);
dctl_addr = XSCOM_ADDR_P9_EC(core_id, P9_EC_DIRECT_CONTROLS);
if (xscom_read(chip_id, cts_addr, &core_thread_state)) {
prlog(PR_ERR, "Could not resume thread %u:%u:%u:"
" Unable to read CORE_THREAD_STATE.\n",
chip_id, core_id, thread_id);
return OPAL_HARDWARE;
}
if (core_thread_state & PPC_BIT(56 + thread_id))
stop = true;
else
stop = false;
if (xscom_read(chip_id, ti_addr, &thread_info)) {
prlog(PR_ERR, "Could not resume thread %u:%u:%u:"
" Unable to read THREAD_INFO.\n",
chip_id, core_id, thread_id);
return OPAL_HARDWARE;
}
if (thread_info & PPC_BIT(thread_id))
active = true;
else
active = false;
if (!active || stop) {
if (xscom_write(chip_id, dctl_addr, P9_THREAD_CLEAR_MAINT(thread_id))) {
prlog(PR_ERR, "Could not resume thread %u:%u:%u:"
" Unable to write EC_DIRECT_CONTROLS.\n",
chip_id, core_id, thread_id);
}
} else {
if (xscom_write(chip_id, dctl_addr, P9_THREAD_CONT(thread_id))) {
prlog(PR_ERR, "Could not resume thread %u:%u:%u:"
" Unable to write EC_DIRECT_CONTROLS.\n",
chip_id, core_id, thread_id);
}
}
return 0;
}
static int p9_stop_thread(struct cpu_thread *cpu)
{
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t core_id = pir_to_core_id(cpu->pir);
uint32_t thread_id = pir_to_thread_id(cpu->pir);
uint32_t dctl_addr;
int rc;
int i;
dctl_addr = XSCOM_ADDR_P9_EC(core_id, P9_EC_DIRECT_CONTROLS);
rc = p9_thread_quiesced(cpu);
if (rc < 0)
return rc;
if (rc) {
prlog(PR_ERR, "Could not stop thread %u:%u:%u:"
" Thread is quiesced already.\n",
chip_id, core_id, thread_id);
return OPAL_BUSY;
}
if (xscom_write(chip_id, dctl_addr, P9_THREAD_STOP(thread_id))) {
prlog(PR_ERR, "Could not stop thread %u:%u:%u:"
" Unable to write EC_DIRECT_CONTROLS.\n",
chip_id, core_id, thread_id);
return OPAL_HARDWARE;
}
for (i = 0; i < P9_QUIESCE_TIMEOUT / P9_QUIESCE_POLL_INTERVAL; i++) {
int rc = p9_thread_quiesced(cpu);
if (rc < 0)
break;
if (rc)
return 0;
time_wait_us(P9_QUIESCE_POLL_INTERVAL);
}
prlog(PR_ERR, "Could not stop thread %u:%u:%u:"
" Unable to quiesce thread.\n",
chip_id, core_id, thread_id);
return OPAL_HARDWARE;
}
static int p9_sreset_thread(struct cpu_thread *cpu)
{
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t core_id = pir_to_core_id(cpu->pir);
uint32_t thread_id = pir_to_thread_id(cpu->pir);
uint32_t dctl_addr;
dctl_addr = XSCOM_ADDR_P9_EC(core_id, P9_EC_DIRECT_CONTROLS);
if (xscom_write(chip_id, dctl_addr, P9_THREAD_SRESET(thread_id))) {
prlog(PR_ERR, "Could not sreset thread %u:%u:%u:"
" Unable to write EC_DIRECT_CONTROLS.\n",
chip_id, core_id, thread_id);
return OPAL_HARDWARE;
}
return 0;
}
/**************** POWER10 direct controls ****************/
/* Long running instructions may take time to complete. Timeout 100ms */
#define P10_QUIESCE_POLL_INTERVAL 100
#define P10_QUIESCE_TIMEOUT 100000
/* Waking may take up to 5ms for deepest sleep states. Set timeout to 100ms */
#define P10_SPWU_POLL_INTERVAL 100
#define P10_SPWU_TIMEOUT 100000
/*
* This implements direct control facilities of processor cores and threads
* using scom registers.
*/
static int p10_core_is_gated(struct cpu_thread *cpu)
{
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t core_id = pir_to_core_id(cpu->pir);
uint32_t ssh_addr;
uint64_t val;
ssh_addr = XSCOM_ADDR_P10_QME_CORE(core_id, P10_QME_SSH_HYP);
if (xscom_read(chip_id, ssh_addr, &val)) {
prlog(PR_ERR, "Could not query core gated on %u:%u:"
" Unable to read QME_SSH_HYP.\n",
chip_id, core_id);
return OPAL_HARDWARE;
}
return !!(val & P10_SSH_CORE_GATED);
}
static int p10_core_set_special_wakeup(struct cpu_thread *cpu)
{
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t core_id = pir_to_core_id(cpu->pir);
uint32_t spwu_addr, ssh_addr;
uint64_t val;
int i;
/* P10 could use SPWU_HYP done bit instead of SSH? */
spwu_addr = XSCOM_ADDR_P10_QME_CORE(core_id, P10_QME_SPWU_HYP);
ssh_addr = XSCOM_ADDR_P10_QME_CORE(core_id, P10_QME_SSH_HYP);
if (xscom_write(chip_id, spwu_addr, P10_SPWU_REQ)) {
prlog(PR_ERR, "Could not set special wakeup on %u:%u:"
" Unable to write QME_SPWU_HYP.\n",
chip_id, core_id);
return OPAL_HARDWARE;
}
for (i = 0; i < P10_SPWU_TIMEOUT / P10_SPWU_POLL_INTERVAL; i++) {
if (xscom_read(chip_id, ssh_addr, &val)) {
prlog(PR_ERR, "Could not set special wakeup on %u:%u:"
" Unable to read QME_SSH_HYP.\n",
chip_id, core_id);
return OPAL_HARDWARE;
}
if (val & P10_SSH_SPWU_DONE) {
/*
* CORE_GATED will be unset on a successful special
* wakeup of the core which indicates that the core is
* out of stop state. If CORE_GATED is still set then
* check SPWU register and raise error only if SPWU_DONE
* is not set, else print a warning and consider SPWU
* operation as successful.
* This is in conjunction with a micocode bug, which
* calls out the fact that SPW can succeed in the case
* the core is gated but SPWU_HYP bit is set.
*/
if (p10_core_is_gated(cpu)) {
if(xscom_read(chip_id, spwu_addr, &val)) {
prlog(PR_ERR, "Core %u:%u:"
" unable to read QME_SPWU_HYP\n",
chip_id, core_id);
return OPAL_HARDWARE;
}
if (val & P10_SPWU_DONE) {
/*
* If SPWU DONE bit is set then
* SPWU operation is complete
*/
prlog(PR_DEBUG, "Special wakeup on "
"%u:%u: core remains gated while"
" SPWU_HYP DONE set\n",
chip_id, core_id);
return 0;
}
/* Deassert spwu for this strange error */
xscom_write(chip_id, spwu_addr, 0);
prlog(PR_ERR,
"Failed special wakeup on %u:%u"
" core remains gated.\n",
chip_id, core_id);
return OPAL_HARDWARE;
} else {
return 0;
}
}
time_wait_us(P10_SPWU_POLL_INTERVAL);
}
prlog(PR_ERR, "Could not set special wakeup on %u:%u:"
" operation timeout.\n",
chip_id, core_id);
/*
* As per the special wakeup protocol we should not de-assert
* the special wakeup on the core until WAKEUP_DONE is set.
* So even on error do not de-assert.
*/
return OPAL_HARDWARE;
}
static int p10_core_clear_special_wakeup(struct cpu_thread *cpu)
{
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t core_id = pir_to_core_id(cpu->pir);
uint32_t spwu_addr;
spwu_addr = XSCOM_ADDR_P10_QME_CORE(core_id, P10_QME_SPWU_HYP);
/* Add a small delay here if spwu problems time_wait_us(1); */
if (xscom_write(chip_id, spwu_addr, 0)) {
prlog(PR_ERR, "Could not clear special wakeup on %u:%u:"
" Unable to write QME_SPWU_HYP.\n",
chip_id, core_id);
return OPAL_HARDWARE;
}
return 0;
}
static int p10_thread_quiesced(struct cpu_thread *cpu)
{
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t core_id = pir_to_core_id(cpu->pir);
uint32_t thread_id = pir_to_thread_id(cpu->pir);
uint32_t ras_addr;
uint64_t ras_status;
ras_addr = XSCOM_ADDR_P10_EC(core_id, P10_EC_RAS_STATUS);
if (xscom_read(chip_id, ras_addr, &ras_status)) {
prlog(PR_ERR, "Could not check thread state on %u:%u:"
" Unable to read EC_RAS_STATUS.\n",
chip_id, core_id);
return OPAL_HARDWARE;
}
/*
* p10_thread_stop for the purpose of sreset wants QUIESCED
* and MAINT bits set. Step, RAM, etc. need more, but we don't
* use those in skiboot.
*
* P10 could try wait for more here in case of errors.
*/
if (!(ras_status & P10_THREAD_QUIESCED(thread_id)))
return 0;
if (!(ras_status & P10_THREAD_MAINT(thread_id)))
return 0;
return 1;
}
static int p10_cont_thread(struct cpu_thread *cpu)
{
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t core_id = pir_to_core_id(cpu->pir);
uint32_t thread_id = pir_to_thread_id(cpu->pir);
uint32_t cts_addr;
uint32_t ti_addr;
uint32_t dctl_addr;
uint64_t core_thread_state;
uint64_t thread_info;
bool active, stop;
int rc;
int i;
rc = p10_thread_quiesced(cpu);
if (rc < 0)
return rc;
if (!rc) {
prlog(PR_ERR, "Could not cont thread %u:%u:%u:"
" Thread is not quiesced.\n",
chip_id, core_id, thread_id);
return OPAL_BUSY;
}
cts_addr = XSCOM_ADDR_P10_EC(core_id, P10_EC_CORE_THREAD_STATE);
ti_addr = XSCOM_ADDR_P10_EC(core_id, P10_EC_THREAD_INFO);
dctl_addr = XSCOM_ADDR_P10_EC(core_id, P10_EC_DIRECT_CONTROLS);
if (xscom_read(chip_id, cts_addr, &core_thread_state)) {
prlog(PR_ERR, "Could not resume thread %u:%u:%u:"
" Unable to read EC_CORE_THREAD_STATE.\n",
chip_id, core_id, thread_id);
return OPAL_HARDWARE;
}
if (core_thread_state & P10_THREAD_STOPPED(thread_id))
stop = true;
else
stop = false;
if (xscom_read(chip_id, ti_addr, &thread_info)) {
prlog(PR_ERR, "Could not resume thread %u:%u:%u:"
" Unable to read EC_THREAD_INFO.\n",
chip_id, core_id, thread_id);
return OPAL_HARDWARE;
}
if (thread_info & P10_THREAD_ACTIVE(thread_id))
active = true;
else
active = false;
if (!active || stop) {
if (xscom_write(chip_id, dctl_addr, P10_THREAD_CLEAR_MAINT(thread_id))) {
prlog(PR_ERR, "Could not resume thread %u:%u:%u:"
" Unable to write EC_DIRECT_CONTROLS.\n",
chip_id, core_id, thread_id);
}
} else {
if (xscom_write(chip_id, dctl_addr, P10_THREAD_START(thread_id))) {
prlog(PR_ERR, "Could not resume thread %u:%u:%u:"
" Unable to write EC_DIRECT_CONTROLS.\n",
chip_id, core_id, thread_id);
}
}
for (i = 0; i < P10_QUIESCE_TIMEOUT / P10_QUIESCE_POLL_INTERVAL; i++) {
int rc = p10_thread_quiesced(cpu);
if (rc < 0)
break;
if (!rc)
return 0;
time_wait_us(P10_QUIESCE_POLL_INTERVAL);
}
prlog(PR_ERR, "Could not start thread %u:%u:%u:"
" Unable to start thread.\n",
chip_id, core_id, thread_id);
return OPAL_HARDWARE;
}
static int p10_stop_thread(struct cpu_thread *cpu)
{
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t core_id = pir_to_core_id(cpu->pir);
uint32_t thread_id = pir_to_thread_id(cpu->pir);
uint32_t dctl_addr;
int rc;
int i;
dctl_addr = XSCOM_ADDR_P10_EC(core_id, P10_EC_DIRECT_CONTROLS);
rc = p10_thread_quiesced(cpu);
if (rc < 0)
return rc;
if (rc) {
prlog(PR_ERR, "Could not stop thread %u:%u:%u:"
" Thread is quiesced already.\n",
chip_id, core_id, thread_id);
return OPAL_BUSY;
}
if (xscom_write(chip_id, dctl_addr, P10_THREAD_STOP(thread_id))) {
prlog(PR_ERR, "Could not stop thread %u:%u:%u:"
" Unable to write EC_DIRECT_CONTROLS.\n",
chip_id, core_id, thread_id);
return OPAL_HARDWARE;
}
for (i = 0; i < P10_QUIESCE_TIMEOUT / P10_QUIESCE_POLL_INTERVAL; i++) {
int rc = p10_thread_quiesced(cpu);
if (rc < 0)
break;
if (rc)
return 0;
time_wait_us(P10_QUIESCE_POLL_INTERVAL);
}
prlog(PR_ERR, "Could not stop thread %u:%u:%u:"
" Unable to quiesce thread.\n",
chip_id, core_id, thread_id);
return OPAL_HARDWARE;
}
static int p10_sreset_thread(struct cpu_thread *cpu)
{
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t core_id = pir_to_core_id(cpu->pir);
uint32_t thread_id = pir_to_thread_id(cpu->pir);
uint32_t dctl_addr;
dctl_addr = XSCOM_ADDR_P10_EC(core_id, P10_EC_DIRECT_CONTROLS);
if (xscom_write(chip_id, dctl_addr, P10_THREAD_SRESET(thread_id))) {
prlog(PR_ERR, "Could not sreset thread %u:%u:%u:"
" Unable to write EC_DIRECT_CONTROLS.\n",
chip_id, core_id, thread_id);
return OPAL_HARDWARE;
}
return 0;
}
/**************** generic direct controls ****************/
int dctl_set_special_wakeup(struct cpu_thread *t)
{
struct cpu_thread *c = t->ec_primary;
int rc = OPAL_SUCCESS;
if (proc_gen == proc_gen_unknown)
return OPAL_UNSUPPORTED;
lock(&c->dctl_lock);
if (c->special_wakeup_count == 0) {
if (proc_gen == proc_gen_p10 || proc_gen == proc_gen_p11)
rc = p10_core_set_special_wakeup(c);
else if (proc_gen == proc_gen_p9)
rc = p9_core_set_special_wakeup(c);
else /* (proc_gen == proc_gen_p8) */
rc = p8_core_set_special_wakeup(c);
}
if (!rc)
c->special_wakeup_count++;
unlock(&c->dctl_lock);
return rc;
}
int dctl_clear_special_wakeup(struct cpu_thread *t)
{
struct cpu_thread *c = t->ec_primary;
int rc = OPAL_SUCCESS;
if (proc_gen == proc_gen_unknown)
return OPAL_UNSUPPORTED;
lock(&c->dctl_lock);
if (!c->special_wakeup_count)
goto out;
if (c->special_wakeup_count == 1) {
if (proc_gen == proc_gen_p10 || proc_gen == proc_gen_p11)
rc = p10_core_clear_special_wakeup(c);
else if (proc_gen == proc_gen_p9)
rc = p9_core_clear_special_wakeup(c);
else /* (proc_gen == proc_gen_p8) */
rc = p8_core_clear_special_wakeup(c);
}
if (!rc)
c->special_wakeup_count--;
out:
unlock(&c->dctl_lock);
return rc;
}
int dctl_core_is_gated(struct cpu_thread *t)
{
struct cpu_thread *c = t->primary;
if (proc_gen == proc_gen_p10 || proc_gen == proc_gen_p11)
return p10_core_is_gated(c);
else if (proc_gen == proc_gen_p9)
return p9_core_is_gated(c);
else
return OPAL_UNSUPPORTED;
}
static int dctl_stop(struct cpu_thread *t)
{
struct cpu_thread *c = t->ec_primary;
int rc;
lock(&c->dctl_lock);
if (t->dctl_stopped) {
unlock(&c->dctl_lock);
return OPAL_BUSY;
}
if (proc_gen == proc_gen_p10 || proc_gen == proc_gen_p11)
rc = p10_stop_thread(t);
else if (proc_gen == proc_gen_p9)
rc = p9_stop_thread(t);
else /* (proc_gen == proc_gen_p8) */
rc = p8_stop_thread(t);
if (!rc)
t->dctl_stopped = true;
unlock(&c->dctl_lock);
return rc;
}
static int dctl_cont(struct cpu_thread *t)
{
struct cpu_thread *c = t->primary;
int rc;
if (proc_gen != proc_gen_p11 && proc_gen != proc_gen_p10 && proc_gen != proc_gen_p9)
return OPAL_UNSUPPORTED;
lock(&c->dctl_lock);
if (!t->dctl_stopped) {
unlock(&c->dctl_lock);
return OPAL_BUSY;
}
if (proc_gen == proc_gen_p10 || proc_gen == proc_gen_p11)
rc = p10_cont_thread(t);
else /* (proc_gen == proc_gen_p9) */
rc = p9_cont_thread(t);
if (!rc)
t->dctl_stopped = false;
unlock(&c->dctl_lock);
return rc;
}
/*
* NOTE:
* The POWER8 sreset does not provide SRR registers, so it can be used
* for fast reboot, but not OPAL_SIGNAL_SYSTEM_RESET or anywhere that is
* expected to return. For now, callers beware.
*/
static int dctl_sreset(struct cpu_thread *t)
{
struct cpu_thread *c = t->ec_primary;
int rc;
lock(&c->dctl_lock);
if (!t->dctl_stopped) {
unlock(&c->dctl_lock);
return OPAL_BUSY;
}
if (proc_gen == proc_gen_p10 || proc_gen == proc_gen_p11)
rc = p10_sreset_thread(t);
else if (proc_gen == proc_gen_p9)
rc = p9_sreset_thread(t);
else /* (proc_gen == proc_gen_p8) */
rc = p8_sreset_thread(t);
if (!rc)
t->dctl_stopped = false;
unlock(&c->dctl_lock);
return rc;
}
/**************** fast reboot API ****************/
int sreset_all_prepare(void)
{
struct cpu_thread *cpu;
if (proc_gen == proc_gen_unknown)
return OPAL_UNSUPPORTED;
prlog(PR_DEBUG, "RESET: Resetting from cpu: 0x%x (core 0x%x)\n",
this_cpu()->pir, pir_to_core_id(this_cpu()->pir));
if (chip_quirk(QUIRK_MAMBO_CALLOUTS)) {
for_each_ungarded_cpu(cpu) {
if (cpu == this_cpu())
continue;
mambo_stop_cpu(cpu);
}
return OPAL_SUCCESS;
}
/* Assert special wakup on all cores. Only on operational cores. */
for_each_ungarded_primary(cpu) {
if (dctl_set_special_wakeup(cpu) != OPAL_SUCCESS)
return OPAL_HARDWARE;
}
prlog(PR_DEBUG, "RESET: Stopping the world...\n");
/* Put everybody in stop except myself */
for_each_ungarded_cpu(cpu) {
if (cpu == this_cpu())
continue;
if (dctl_stop(cpu) != OPAL_SUCCESS)
return OPAL_HARDWARE;
}
return OPAL_SUCCESS;
}
void sreset_all_finish(void)
{
struct cpu_thread *cpu;
if (chip_quirk(QUIRK_MAMBO_CALLOUTS))
return;
for_each_ungarded_primary(cpu)
dctl_clear_special_wakeup(cpu);
}
int sreset_all_others(void)
{
struct cpu_thread *cpu;
prlog(PR_DEBUG, "RESET: Resetting all threads but self...\n");
/*
* mambo should actually implement stop as well, and implement
* the dctl_ helpers properly. Currently it's racy just sresetting.
*/
if (chip_quirk(QUIRK_MAMBO_CALLOUTS)) {
for_each_ungarded_cpu(cpu) {
if (cpu == this_cpu())
continue;
mambo_sreset_cpu(cpu);
}
return OPAL_SUCCESS;
}
for_each_ungarded_cpu(cpu) {
if (cpu == this_cpu())
continue;
if (dctl_sreset(cpu) != OPAL_SUCCESS)
return OPAL_HARDWARE;
}
return OPAL_SUCCESS;
}
/**************** OPAL_SIGNAL_SYSTEM_RESET API ****************/
/*
* This provides a way for the host to raise system reset exceptions
* on other threads using direct control scoms on POWER9.
*
* We assert special wakeup on the core first.
* Then stop target thread and wait for it to quiesce.
* Then sreset the target thread, which resumes execution on that thread.
* Then de-assert special wakeup on the core.
*/
static int64_t do_sreset_cpu(struct cpu_thread *cpu)
{
int rc;
if (this_cpu() == cpu) {
prlog(PR_ERR, "SRESET: Unable to reset self\n");
return OPAL_PARAMETER;
}
rc = dctl_set_special_wakeup(cpu);
if (rc)
return rc;
rc = dctl_stop(cpu);
if (rc)
goto out_spwk;
rc = dctl_sreset(cpu);
if (rc)
goto out_cont;
dctl_clear_special_wakeup(cpu);
return 0;
out_cont:
dctl_cont(cpu);
out_spwk:
dctl_clear_special_wakeup(cpu);
return rc;
}
static struct lock sreset_lock = LOCK_UNLOCKED;
int64_t opal_signal_system_reset(int cpu_nr)
{
struct cpu_thread *cpu;
int64_t ret;
if (proc_gen != proc_gen_p9 && proc_gen != proc_gen_p10 && proc_gen != proc_gen_p11)
return OPAL_UNSUPPORTED;
/*
* Broadcasts unsupported. Not clear what threads should be
* signaled, so it's better for the OS to perform one-at-a-time
* for now.
*/
if (cpu_nr < 0)
return OPAL_CONSTRAINED;
/* Reset a single CPU */
cpu = find_cpu_by_server(cpu_nr);
if (!cpu) {
prlog(PR_ERR, "SRESET: could not find cpu by server %d\n", cpu_nr);
return OPAL_PARAMETER;
}
lock(&sreset_lock);
ret = do_sreset_cpu(cpu);
unlock(&sreset_lock);
return ret;
}
void direct_controls_init(void)
{
if (chip_quirk(QUIRK_NO_DIRECT_CTL))
return;
if (proc_gen != proc_gen_p9 && proc_gen != proc_gen_p10 && proc_gen != proc_gen_p11)
return;
opal_register(OPAL_SIGNAL_SYSTEM_RESET, opal_signal_system_reset, 1);
}
|