1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
|
// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/*
* skiboot C entry point
*
* Copyright 2013-2019 IBM Corp.
*/
#include <skiboot.h>
#include <slw.h>
#include <psi.h>
#include <chiptod.h>
#include <nx.h>
#include <cpu.h>
#include <processor.h>
#include <xscom.h>
#include <opal.h>
#include <opal-msg.h>
#include <elf.h>
#include <elf-abi.h>
#include <io.h>
#include <cec.h>
#include <device.h>
#include <pci.h>
#include <lpc.h>
#include <i2c.h>
#include <chip.h>
#include <interrupts.h>
#include <mem_region.h>
#include <trace.h>
#include <console.h>
#include <fsi-master.h>
#include <centaur.h>
#include <ocmb.h>
#include <libfdt/libfdt.h>
#include <timer.h>
#include <ipmi.h>
#include <pldm.h>
#include <sensor.h>
#include <xive.h>
#include <nvram.h>
#include <vas.h>
#include <libstb/secureboot.h>
#include <libstb/trustedboot.h>
#include <phys-map.h>
#include <imc.h>
#include <dts.h>
#include <dio-p9.h>
#include <sbe-p9.h>
#include <debug_descriptor.h>
#include <occ.h>
#include <opal-dump.h>
#include <xscom-p9-regs.h>
#include <xscom-p10-regs.h>
enum proc_gen proc_gen;
unsigned int pcie_max_link_speed;
bool pci_tracing;
bool verbose_eeh;
extern const char version[];
static uint64_t kernel_entry;
static size_t kernel_size;
static bool kernel_32bit;
/* We backup the previous vectors here before copying our own */
static uint8_t old_vectors[EXCEPTION_VECTORS_END];
#ifdef DEBUG
#define DEBUG_STR "-debug"
#else
#define DEBUG_STR ""
#endif
#ifdef SKIBOOT_GCOV
void skiboot_gcov_done(void);
#endif
struct debug_descriptor debug_descriptor = {
.eye_catcher = "OPALdbug",
.version = CPU_TO_BE32(DEBUG_DESC_VERSION),
.state_flags = 0,
.memcons_phys = 0, /* cpu_to_be64(&memcons) can't init constant */
.trace_mask = 0, /* All traces disabled by default */
/* console log level:
* high 4 bits in memory, low 4 bits driver (e.g. uart). */
#ifdef DEBUG
.console_log_levels = (PR_TRACE << 4) | PR_DEBUG,
#else
.console_log_levels = (PR_DEBUG << 4) | PR_NOTICE,
#endif
};
static void checksum_romem(void);
static bool try_load_elf64_le(struct elf_hdr *header)
{
struct elf64le_hdr *kh = (struct elf64le_hdr *)header;
uint64_t load_base = (uint64_t)kh;
struct elf64le_phdr *ph;
unsigned int i;
printf("INIT: 64-bit LE kernel discovered\n");
/* Look for a loadable program header that has our entry in it
*
* Note that we execute the kernel in-place, we don't actually
* obey the load informations in the headers. This is expected
* to work for the Linux Kernel because it's a fairly dumb ELF
* but it will not work for any ELF binary.
*/
ph = (struct elf64le_phdr *)(load_base + le64_to_cpu(kh->e_phoff));
for (i = 0; i < le16_to_cpu(kh->e_phnum); i++, ph++) {
if (le32_to_cpu(ph->p_type) != ELF_PTYPE_LOAD)
continue;
if (le64_to_cpu(ph->p_vaddr) > le64_to_cpu(kh->e_entry) ||
(le64_to_cpu(ph->p_vaddr) + le64_to_cpu(ph->p_memsz)) <
le64_to_cpu(kh->e_entry))
continue;
/* Get our entry */
kernel_entry = le64_to_cpu(kh->e_entry) -
le64_to_cpu(ph->p_vaddr) + le64_to_cpu(ph->p_offset);
break;
}
if (!kernel_entry) {
prerror("INIT: Failed to find kernel entry !\n");
return false;
}
kernel_entry += load_base;
kernel_32bit = false;
kernel_size = le64_to_cpu(kh->e_shoff) +
((uint32_t)le16_to_cpu(kh->e_shentsize) *
(uint32_t)le16_to_cpu(kh->e_shnum));
prlog(PR_DEBUG, "INIT: 64-bit kernel entry at 0x%llx, size 0x%lx\n",
kernel_entry, kernel_size);
return true;
}
static bool try_load_elf64(struct elf_hdr *header)
{
struct elf64be_hdr *kh = (struct elf64be_hdr *)header;
struct elf64le_hdr *khle = (struct elf64le_hdr *)header;
uint64_t load_base = (uint64_t)kh;
struct elf64be_phdr *ph;
struct elf64be_shdr *sh;
unsigned int i;
/* Check it's a ppc64 LE ELF */
if (khle->ei_ident == ELF_IDENT &&
khle->ei_data == ELF_DATA_LSB &&
le16_to_cpu(khle->e_machine) == ELF_MACH_PPC64) {
return try_load_elf64_le(header);
}
/* Check it's a ppc64 ELF */
if (kh->ei_ident != ELF_IDENT ||
kh->ei_data != ELF_DATA_MSB ||
be16_to_cpu(kh->e_machine) != ELF_MACH_PPC64) {
prerror("INIT: Kernel doesn't look like an ppc64 ELF\n");
return false;
}
/* Look for a loadable program header that has our entry in it
*
* Note that we execute the kernel in-place, we don't actually
* obey the load informations in the headers. This is expected
* to work for the Linux Kernel because it's a fairly dumb ELF
* but it will not work for any ELF binary.
*/
ph = (struct elf64be_phdr *)(load_base + be64_to_cpu(kh->e_phoff));
for (i = 0; i < be16_to_cpu(kh->e_phnum); i++, ph++) {
if (be32_to_cpu(ph->p_type) != ELF_PTYPE_LOAD)
continue;
if (be64_to_cpu(ph->p_vaddr) > be64_to_cpu(kh->e_entry) ||
(be64_to_cpu(ph->p_vaddr) + be64_to_cpu(ph->p_memsz)) <
be64_to_cpu(kh->e_entry))
continue;
/* Get our entry */
kernel_entry = be64_to_cpu(kh->e_entry) -
be64_to_cpu(ph->p_vaddr) + be64_to_cpu(ph->p_offset);
break;
}
if (!kernel_entry) {
prerror("INIT: Failed to find kernel entry !\n");
return false;
}
/* For the normal big-endian ELF ABI, the kernel entry points
* to a function descriptor in the data section. Linux instead
* has it point directly to code. Test whether it is pointing
* into an executable section or not to figure this out. Default
* to assuming it obeys the ABI.
*/
sh = (struct elf64be_shdr *)(load_base + be64_to_cpu(kh->e_shoff));
for (i = 0; i < be16_to_cpu(kh->e_shnum); i++, sh++) {
if (be64_to_cpu(sh->sh_addr) <= be64_to_cpu(kh->e_entry) &&
(be64_to_cpu(sh->sh_addr) + be64_to_cpu(sh->sh_size)) >
be64_to_cpu(kh->e_entry))
break;
}
if (i == be16_to_cpu(kh->e_shnum) ||
!(be64_to_cpu(sh->sh_flags) & ELF_SFLAGS_X)) {
kernel_entry = *(uint64_t *)(kernel_entry + load_base);
kernel_entry = kernel_entry -
be64_to_cpu(ph->p_vaddr) + be64_to_cpu(ph->p_offset);
}
kernel_entry += load_base;
kernel_32bit = false;
kernel_size = be64_to_cpu(kh->e_shoff) +
((uint32_t)be16_to_cpu(kh->e_shentsize) *
(uint32_t)be16_to_cpu(kh->e_shnum));
printf("INIT: 64-bit kernel entry at 0x%llx, size 0x%lx\n",
kernel_entry, kernel_size);
return true;
}
static bool try_load_elf32_le(struct elf_hdr *header)
{
struct elf32le_hdr *kh = (struct elf32le_hdr *)header;
uint64_t load_base = (uint64_t)kh;
struct elf32le_phdr *ph;
unsigned int i;
printf("INIT: 32-bit LE kernel discovered\n");
/* Look for a loadable program header that has our entry in it
*
* Note that we execute the kernel in-place, we don't actually
* obey the load informations in the headers. This is expected
* to work for the Linux Kernel because it's a fairly dumb ELF
* but it will not work for any ELF binary.
*/
ph = (struct elf32le_phdr *)(load_base + le32_to_cpu(kh->e_phoff));
for (i = 0; i < le16_to_cpu(kh->e_phnum); i++, ph++) {
if (le32_to_cpu(ph->p_type) != ELF_PTYPE_LOAD)
continue;
if (le32_to_cpu(ph->p_vaddr) > le32_to_cpu(kh->e_entry) ||
(le32_to_cpu(ph->p_vaddr) + le32_to_cpu(ph->p_memsz)) <
le32_to_cpu(kh->e_entry))
continue;
/* Get our entry */
kernel_entry = le32_to_cpu(kh->e_entry) -
le32_to_cpu(ph->p_vaddr) + le32_to_cpu(ph->p_offset);
break;
}
if (!kernel_entry) {
prerror("INIT: Failed to find kernel entry !\n");
return false;
}
kernel_entry += load_base;
kernel_32bit = true;
printf("INIT: 32-bit kernel entry at 0x%llx\n", kernel_entry);
return true;
}
static bool try_load_elf32(struct elf_hdr *header)
{
struct elf32be_hdr *kh = (struct elf32be_hdr *)header;
struct elf32le_hdr *khle = (struct elf32le_hdr *)header;
uint64_t load_base = (uint64_t)kh;
struct elf32be_phdr *ph;
unsigned int i;
/* Check it's a ppc32 LE ELF */
if (khle->ei_ident == ELF_IDENT &&
khle->ei_data == ELF_DATA_LSB &&
le16_to_cpu(khle->e_machine) == ELF_MACH_PPC32) {
return try_load_elf32_le(header);
}
/* Check it's a ppc32 ELF */
if (kh->ei_ident != ELF_IDENT ||
kh->ei_data != ELF_DATA_MSB ||
be16_to_cpu(kh->e_machine) != ELF_MACH_PPC32) {
prerror("INIT: Kernel doesn't look like an ppc32 ELF\n");
return false;
}
/* Look for a loadable program header that has our entry in it
*
* Note that we execute the kernel in-place, we don't actually
* obey the load informations in the headers. This is expected
* to work for the Linux Kernel because it's a fairly dumb ELF
* but it will not work for any ELF binary.
*/
ph = (struct elf32be_phdr *)(load_base + be32_to_cpu(kh->e_phoff));
for (i = 0; i < be16_to_cpu(kh->e_phnum); i++, ph++) {
if (be32_to_cpu(ph->p_type) != ELF_PTYPE_LOAD)
continue;
if (be32_to_cpu(ph->p_vaddr) > be32_to_cpu(kh->e_entry) ||
(be32_to_cpu(ph->p_vaddr) + be32_to_cpu(ph->p_memsz)) <
be32_to_cpu(kh->e_entry))
continue;
/* Get our entry */
kernel_entry = be32_to_cpu(kh->e_entry) -
be32_to_cpu(ph->p_vaddr) + be32_to_cpu(ph->p_offset);
break;
}
if (!kernel_entry) {
prerror("INIT: Failed to find kernel entry !\n");
return false;
}
kernel_entry += load_base;
kernel_32bit = true;
printf("INIT: 32-bit kernel entry at 0x%llx\n", kernel_entry);
return true;
}
extern char __builtin_kernel_start[];
extern char __builtin_kernel_end[];
extern uint64_t boot_offset;
static size_t initramfs_size;
bool start_preload_kernel(void)
{
int loaded;
/* Try to load an external kernel payload through the platform hooks */
kernel_size = KERNEL_LOAD_SIZE;
loaded = start_preload_resource(RESOURCE_ID_KERNEL,
RESOURCE_SUBID_NONE,
KERNEL_LOAD_BASE,
&kernel_size);
if (loaded != OPAL_SUCCESS) {
printf("INIT: platform start load kernel failed\n");
kernel_size = 0;
return false;
}
initramfs_size = INITRAMFS_LOAD_SIZE;
loaded = start_preload_resource(RESOURCE_ID_INITRAMFS,
RESOURCE_SUBID_NONE,
INITRAMFS_LOAD_BASE, &initramfs_size);
if (loaded != OPAL_SUCCESS) {
printf("INIT: platform start load initramfs failed\n");
initramfs_size = 0;
return false;
}
return true;
}
static bool load_kernel(void)
{
void *stb_container = NULL;
struct elf_hdr *kh;
int loaded;
prlog(PR_NOTICE, "INIT: Waiting for kernel...\n");
loaded = wait_for_resource_loaded(RESOURCE_ID_KERNEL,
RESOURCE_SUBID_NONE);
if (loaded != OPAL_SUCCESS) {
printf("INIT: platform wait for kernel load failed\n");
kernel_size = 0;
}
/* Try embedded kernel payload */
if (!kernel_size) {
kernel_size = __builtin_kernel_end - __builtin_kernel_start;
if (kernel_size) {
/* Move the built-in kernel up */
uint64_t builtin_base =
((uint64_t)__builtin_kernel_start) -
SKIBOOT_BASE + boot_offset;
printf("Using built-in kernel\n");
memmove(KERNEL_LOAD_BASE, (void*)builtin_base,
kernel_size);
}
}
if (dt_has_node_property(dt_chosen, "kernel-base-address", NULL)) {
kernel_entry = dt_prop_get_u64(dt_chosen,
"kernel-base-address");
prlog(PR_DEBUG, "INIT: Kernel image at 0x%llx\n", kernel_entry);
kh = (struct elf_hdr *)kernel_entry;
/*
* If the kernel is at 0, restore it as it was overwritten
* by our vectors.
*/
if (kernel_entry < EXCEPTION_VECTORS_END) {
cpu_set_sreset_enable(false);
memcpy_null(NULL, old_vectors, EXCEPTION_VECTORS_END);
sync_icache();
} else {
/* Hack for STB in Mambo, assume at least 4kb in mem */
if (!kernel_size)
kernel_size = SECURE_BOOT_HEADERS_SIZE;
if (stb_is_container((void*)kernel_entry, kernel_size)) {
stb_container = (void*)kernel_entry;
kh = (struct elf_hdr *) (kernel_entry + SECURE_BOOT_HEADERS_SIZE);
} else
kh = (struct elf_hdr *) (kernel_entry);
}
} else {
if (!kernel_size) {
printf("INIT: Assuming kernel at %p\n",
KERNEL_LOAD_BASE);
/* Hack for STB in Mambo, assume at least 4kb in mem */
kernel_size = SECURE_BOOT_HEADERS_SIZE;
kernel_entry = (uint64_t)KERNEL_LOAD_BASE;
}
if (stb_is_container(KERNEL_LOAD_BASE, kernel_size)) {
stb_container = KERNEL_LOAD_BASE;
kh = (struct elf_hdr *) (KERNEL_LOAD_BASE + SECURE_BOOT_HEADERS_SIZE);
} else
kh = (struct elf_hdr *) (KERNEL_LOAD_BASE);
}
prlog(PR_DEBUG,
"INIT: Kernel loaded, size: %zu bytes (0 = unknown preload)\n",
kernel_size);
if (kh->ei_ident != ELF_IDENT) {
prerror("INIT: ELF header not found. Assuming raw binary.\n");
return true;
}
if (kh->ei_class == ELF_CLASS_64) {
if (!try_load_elf64(kh))
return false;
} else if (kh->ei_class == ELF_CLASS_32) {
if (!try_load_elf32(kh))
return false;
} else {
prerror("INIT: Neither ELF32 not ELF64 ?\n");
return false;
}
if (chip_quirk(QUIRK_MAMBO_CALLOUTS)) {
secureboot_verify(RESOURCE_ID_KERNEL,
stb_container,
SECURE_BOOT_HEADERS_SIZE + kernel_size);
trustedboot_measure(RESOURCE_ID_KERNEL,
stb_container,
SECURE_BOOT_HEADERS_SIZE + kernel_size);
}
return true;
}
static void load_initramfs(void)
{
uint64_t *initramfs_start;
void *stb_container = NULL;
int loaded;
loaded = wait_for_resource_loaded(RESOURCE_ID_INITRAMFS,
RESOURCE_SUBID_NONE);
if (loaded != OPAL_SUCCESS || !initramfs_size)
return;
if (stb_is_container(INITRAMFS_LOAD_BASE, initramfs_size)) {
stb_container = INITRAMFS_LOAD_BASE;
initramfs_start = INITRAMFS_LOAD_BASE + SECURE_BOOT_HEADERS_SIZE;
} else {
initramfs_start = INITRAMFS_LOAD_BASE;
}
dt_check_del_prop(dt_chosen, "linux,initrd-start");
dt_check_del_prop(dt_chosen, "linux,initrd-end");
printf("INIT: Initramfs loaded, size: %zu bytes\n", initramfs_size);
dt_add_property_u64(dt_chosen, "linux,initrd-start",
(uint64_t)initramfs_start);
dt_add_property_u64(dt_chosen, "linux,initrd-end",
(uint64_t)initramfs_start + initramfs_size);
if (chip_quirk(QUIRK_MAMBO_CALLOUTS)) {
secureboot_verify(RESOURCE_ID_INITRAMFS,
stb_container,
SECURE_BOOT_HEADERS_SIZE + initramfs_size);
trustedboot_measure(RESOURCE_ID_INITRAMFS,
stb_container,
SECURE_BOOT_HEADERS_SIZE + initramfs_size);
}
}
static void cpu_disable_ME_RI_one(void *param __unused)
{
disable_machine_check();
mtmsrd(0, 1);
}
static int64_t cpu_disable_ME_RI_all(void)
{
struct cpu_thread *cpu;
struct cpu_job **jobs;
jobs = zalloc(sizeof(struct cpu_job *) * (cpu_max_pir + 1));
assert(jobs);
for_each_available_cpu(cpu) {
if (cpu == this_cpu())
continue;
jobs[cpu->pir] = cpu_queue_job(cpu, "cpu_disable_ME_RI",
cpu_disable_ME_RI_one, NULL);
}
/* this cpu */
cpu_disable_ME_RI_one(NULL);
for_each_available_cpu(cpu) {
if (jobs[cpu->pir])
cpu_wait_job(jobs[cpu->pir], true);
}
free(jobs);
return OPAL_SUCCESS;
}
static void *fdt;
void __noreturn load_and_boot_kernel(bool is_reboot)
{
const struct dt_property *memprop;
const char *cmdline, *stdoutp;
uint64_t mem_top;
memprop = dt_find_property(dt_root, DT_PRIVATE "maxmem");
if (memprop)
mem_top = (u64)dt_property_get_cell(memprop, 0) << 32
| dt_property_get_cell(memprop, 1);
else /* XXX HB hack, might want to calc it */
mem_top = 0x40000000;
op_display(OP_LOG, OP_MOD_INIT, 0x000A);
/* Load kernel LID */
if (!load_kernel()) {
op_display(OP_FATAL, OP_MOD_INIT, 1);
abort();
}
load_initramfs();
trustedboot_exit_boot_services();
#ifdef CONFIG_PLDM
pldm_platform_send_progress_state_change(
PLDM_STATE_SET_BOOT_PROG_STATE_STARTING_OP_SYS);
#else
ipmi_set_fw_progress_sensor(IPMI_FW_OS_BOOT);
#endif
if (!is_reboot) {
/* We wait for the nvram read to complete here so we can
* grab stuff from there such as the kernel arguments
*/
nvram_wait_for_load();
if (!occ_sensors_init())
dts_sensor_create_nodes(sensor_node);
opal_mpipl_init();
} else {
/* fdt will be rebuilt */
free(fdt);
fdt = NULL;
nvram_reinit();
occ_pstates_init();
}
/* Use nvram bootargs over device tree */
cmdline = nvram_query_safe("bootargs");
if (cmdline) {
dt_check_del_prop(dt_chosen, "bootargs");
dt_add_property_string(dt_chosen, "bootargs", cmdline);
prlog(PR_DEBUG, "INIT: Command line from NVRAM: %s\n",
cmdline);
}
op_display(OP_LOG, OP_MOD_INIT, 0x000B);
add_fast_reboot_dt_entries();
if (platform.finalise_dt)
platform.finalise_dt(is_reboot);
/* Create the device tree blob to boot OS. */
fdt = create_dtb(dt_root, false);
if (!fdt) {
op_display(OP_FATAL, OP_MOD_INIT, 2);
abort();
}
op_display(OP_LOG, OP_MOD_INIT, 0x000C);
mem_dump_free();
/* Dump the selected console */
stdoutp = dt_prop_get_def(dt_chosen, "linux,stdout-path", NULL);
prlog(PR_DEBUG, "INIT: stdout-path: %s\n", stdoutp ? stdoutp : "");
fdt_set_boot_cpuid_phys(fdt, this_cpu()->pir);
/* Check there is something there before we branch to it */
if (*(uint32_t *)kernel_entry == 0) {
prlog(PR_EMERG, "FATAL: Kernel is zeros, can't execute!\n");
assert(0);
}
if (platform.exit)
platform.exit();
/* Take processors out of nap */
cpu_set_sreset_enable(false);
cpu_set_ipi_enable(false);
printf("INIT: Starting kernel at 0x%llx, fdt at %p %u bytes\n",
kernel_entry, fdt, fdt_totalsize(fdt));
/* Disable machine checks on all */
cpu_disable_ME_RI_all();
patch_traps(false);
cpu_set_hile_mode(false); /* Clear HILE on all CPUs */
checksum_romem();
debug_descriptor.state_flags |= OPAL_BOOT_COMPLETE;
cpu_give_self_os();
if (kernel_32bit)
start_kernel32(kernel_entry, fdt, mem_top);
start_kernel(kernel_entry, fdt, mem_top);
}
static void storage_keys_fixup(void)
{
struct dt_node *cpus, *n;
cpus = dt_find_by_path(dt_root, "/cpus");
assert(cpus);
if (proc_gen == proc_gen_unknown)
return;
dt_for_each_child(cpus, n) {
/* There may be cache nodes in /cpus. */
if (!dt_has_node_property(n, "device_type", "cpu") ||
dt_has_node_property(n, "ibm,processor-storage-keys", NULL))
continue;
/*
* skiboot supports p8 & p9, both of which support the IAMR, and
* both of which support 32 keys. So advertise 32 keys for data
* accesses and 32 for instruction accesses.
*/
dt_add_property_cells(n, "ibm,processor-storage-keys", 32, 32);
}
}
static void dt_fixups(void)
{
struct dt_node *n;
struct dt_node *primary_lpc = NULL;
/* lpc node missing #address/size cells. Also pick one as
* primary for now (TBD: How to convey that from HB)
*/
dt_for_each_compatible(dt_root, n, "ibm,power8-lpc") {
if (!primary_lpc || dt_has_node_property(n, "primary", NULL))
primary_lpc = n;
if (dt_has_node_property(n, "#address-cells", NULL))
break;
dt_add_property_cells(n, "#address-cells", 2);
dt_add_property_cells(n, "#size-cells", 1);
dt_add_property_strings(n, "status", "ok");
}
/* Missing "primary" property in LPC bus */
if (primary_lpc && !dt_has_node_property(primary_lpc, "primary", NULL))
dt_add_property(primary_lpc, "primary", NULL, 0);
/* Missing "scom-controller" */
dt_for_each_compatible(dt_root, n, "ibm,xscom") {
if (!dt_has_node_property(n, "scom-controller", NULL))
dt_add_property(n, "scom-controller", NULL, 0);
}
storage_keys_fixup();
}
static void add_arch_vector(void)
{
/**
* vec5 = a PVR-list : Number-of-option-vectors :
* option-vectors[Number-of-option-vectors + 1]
*/
uint8_t vec5[] = {0x05, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00};
if (dt_has_node_property(dt_chosen, "ibm,architecture-vec-5", NULL))
return;
dt_add_property(dt_chosen, "ibm,architecture-vec-5",
vec5, sizeof(vec5));
}
static void dt_init_misc(void)
{
/* Check if there's a /chosen node, if not, add one */
dt_chosen = dt_find_by_path(dt_root, "/chosen");
if (!dt_chosen)
dt_chosen = dt_new(dt_root, "chosen");
assert(dt_chosen);
/* Add IBM architecture vectors if needed */
add_arch_vector();
/* Add the "OPAL virtual ICS*/
add_ics_node();
/* Additional fixups. TODO: Move into platform */
dt_fixups();
}
static u8 console_get_level(const char *s)
{
if (strcmp(s, "emerg") == 0)
return PR_EMERG;
if (strcmp(s, "alert") == 0)
return PR_ALERT;
if (strcmp(s, "crit") == 0)
return PR_CRIT;
if (strcmp(s, "err") == 0)
return PR_ERR;
if (strcmp(s, "warning") == 0)
return PR_WARNING;
if (strcmp(s, "notice") == 0)
return PR_NOTICE;
if (strcmp(s, "printf") == 0)
return PR_PRINTF;
if (strcmp(s, "info") == 0)
return PR_INFO;
if (strcmp(s, "debug") == 0)
return PR_DEBUG;
if (strcmp(s, "trace") == 0)
return PR_TRACE;
if (strcmp(s, "insane") == 0)
return PR_INSANE;
/* Assume it's a number instead */
return atoi(s);
}
static void console_log_level(void)
{
const char *s;
u8 level;
/* console log level:
* high 4 bits in memory, low 4 bits driver (e.g. uart). */
s = nvram_query_safe("log-level-driver");
if (s) {
level = console_get_level(s);
debug_descriptor.console_log_levels =
(debug_descriptor.console_log_levels & 0xf0 ) |
(level & 0x0f);
prlog(PR_NOTICE, "console: Setting driver log level to %i\n",
level & 0x0f);
}
s = nvram_query_safe("log-level-memory");
if (s) {
level = console_get_level(s);
debug_descriptor.console_log_levels =
(debug_descriptor.console_log_levels & 0x0f ) |
((level & 0x0f) << 4);
prlog(PR_NOTICE, "console: Setting memory log level to %i\n",
level & 0x0f);
}
}
typedef void (*ctorcall_t)(void);
static void __nomcount do_ctors(void)
{
extern ctorcall_t __ctors_start[], __ctors_end[];
ctorcall_t *call;
for (call = __ctors_start; call < __ctors_end; call++)
(*call)();
}
#ifdef ELF_ABI_v2
static void setup_branch_null_catcher(void)
{
asm volatile( \
".section .rodata" "\n\t" \
"3: .string \"branch to NULL\"" "\n\t" \
".previous" "\n\t" \
".section .trap_table,\"aw\"" "\n\t" \
".llong 0" "\n\t" \
".llong 3b" "\n\t" \
".previous" "\n\t" \
);
}
#else
static void branch_null(void)
{
assert(0);
}
static void setup_branch_null_catcher(void)
{
void (*bn)(void) = branch_null;
/*
* FIXME: This copies the function descriptor (16 bytes) for
* ABI v1 (ie. big endian). This will be broken if we ever
* move to ABI v2 (ie little endian)
*/
memcpy_null((void *)0, bn, 16);
}
#endif
void copy_sreset_vector(void)
{
uint32_t *src, *dst;
/* Copy the reset code over the entry point. */
src = &reset_patch_start;
dst = (uint32_t *)0x100;
while(src < &reset_patch_end)
*(dst++) = *(src++);
sync_icache();
}
void copy_sreset_vector_fast_reboot(void)
{
uint32_t *src, *dst;
/* Copy the reset code over the entry point. */
src = &reset_fast_reboot_patch_start;
dst = (uint32_t *)0x100;
while(src < &reset_fast_reboot_patch_end)
*(dst++) = *(src++);
sync_icache();
}
void copy_exception_vectors(void)
{
/* Copy from 0x100 to EXCEPTION_VECTORS_END, avoid below 0x100 as
* this is the boot flag used by CPUs still potentially entering
* skiboot.
*/
void *skiboot_constant_addr exception_vectors_start_addr = (void *)(SKIBOOT_BASE + 0x100);
void *skiboot_constant_addr dst = (void *)0x100;
memcpy(dst, exception_vectors_start_addr,
EXCEPTION_VECTORS_END - 0x100);
sync_icache();
}
/*
* When skiboot owns the exception vectors, patch in 'trap' for assert fails.
* Otherwise use assert_fail()
*/
void patch_traps(bool enable)
{
struct trap_table_entry *tte;
for (tte = __trap_table_start; tte < __trap_table_end; tte++) {
uint32_t *insn;
insn = (uint32_t *)tte->address;
if (enable) {
*insn = PPC_INST_TRAP;
} else {
*insn = PPC_INST_NOP;
}
}
sync_icache();
}
static void per_thread_sanity_checks(void)
{
struct cpu_thread *cpu = this_cpu();
/**
* @fwts-label NonZeroHRMOR
* @fwts-advice The contents of the hypervisor real mode offset register
* (HRMOR) is bitwise orded with the address of any hypervisor real mode
* (i.e Skiboot) memory accesses. Skiboot does not support operating
* with a non-zero HRMOR and setting it will break some things (e.g
* XSCOMs) in hard-to-debug ways.
*/
assert(mfspr(SPR_HRMOR) == 0);
/**
* @fwts-label UnknownSecondary
* @fwts-advice The boot CPU attampted to call in a secondary thread
* without initialising the corresponding cpu_thread structure. This may
* happen if the HDAT or devicetree reports too few threads or cores for
* this processor.
*/
assert(cpu->state != cpu_state_no_cpu);
}
void pci_nvram_init(void)
{
const char *nvram_speed;
verbose_eeh = nvram_query_eq_safe("pci-eeh-verbose", "true");
if (verbose_eeh)
prlog(PR_INFO, "PHB: Verbose EEH enabled\n");
pcie_max_link_speed = 0;
nvram_speed = nvram_query_dangerous("pcie-max-link-speed");
if (nvram_speed) {
pcie_max_link_speed = atoi(nvram_speed);
prlog(PR_NOTICE, "PHB: NVRAM set max link speed to GEN%i\n",
pcie_max_link_speed);
}
pci_tracing = nvram_query_eq_safe("pci-tracing", "true");
}
static uint32_t mem_csum(void *_p, void *_e)
{
size_t len = _e - _p;
uint32_t *p = _p;
uint32_t v1 = 0, v2 = 0;
uint32_t csum;
unsigned int i;
for (i = 0; i < len; i += 4) {
uint32_t v = *p++;
v1 += v;
v2 += v1;
}
csum = v1 ^ v2;
return csum;
}
static uint32_t romem_csum;
static void checksum_romem(void)
{
uint32_t csum;
romem_csum = 0;
if (chip_quirk(QUIRK_SLOW_SIM))
return;
csum = mem_csum(_start, _head_end);
romem_csum ^= csum;
csum = mem_csum(_stext, _romem_end);
romem_csum ^= csum;
csum = mem_csum(__builtin_kernel_start, __builtin_kernel_end);
romem_csum ^= csum;
}
bool verify_romem(void)
{
uint32_t old = romem_csum;
checksum_romem();
if (old != romem_csum) {
romem_csum = old;
prlog(PR_NOTICE, "OPAL checksums did not match\n");
return false;
}
return true;
}
static void mask_pc_system_xstop(void)
{
struct cpu_thread *cpu;
uint32_t chip_id, core_id;
int rc;
if (proc_gen != proc_gen_p10 && proc_gen != proc_gen_p11)
return;
if (chip_quirk(QUIRK_MAMBO_CALLOUTS) || chip_quirk(QUIRK_AWAN))
return;
/*
* On P10 Mask PC system checkstop (bit 28). This is needed
* for HW570622. We keep processor recovery disabled via
* HID[5] and mask the checkstop that it can cause. CME does
* the recovery handling for us.
*/
for_each_cpu(cpu) {
chip_id = cpu->chip_id;
core_id = pir_to_core_id(cpu->pir);
rc = xscom_write(chip_id,
XSCOM_ADDR_P10_EC(core_id, P10_CORE_FIRMASK_OR),
PPC_BIT(28));
if (rc)
prerror("Error setting FIR MASK rc:%d on PIR:%x\n",
rc, cpu->pir);
}
}
bool lpar_per_core = false;
static void probe_lpar_per_core(void)
{
struct cpu_thread *cpu = this_cpu();
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t core_id = pir_to_core_id(cpu->pir);
uint64_t addr;
uint64_t core_thread_state;
int rc;
if (chip_quirk(QUIRK_MAMBO_CALLOUTS) || chip_quirk(QUIRK_AWAN))
return;
if (proc_gen == proc_gen_p9)
addr = XSCOM_ADDR_P9_EC(core_id, P9_CORE_THREAD_STATE);
else if (proc_gen == proc_gen_p10 || proc_gen == proc_gen_p11)
addr = XSCOM_ADDR_P10_EC(core_id, P10_EC_CORE_THREAD_STATE);
else
return;
rc = xscom_read(chip_id, addr, &core_thread_state);
if (rc) {
prerror("Error reading CORE_THREAD_STATE rc:%d on PIR:%x\n",
rc, cpu->pir);
return;
}
if (core_thread_state & PPC_BIT(62)) {
lpar_per_core = true;
prlog(PR_WARNING, "LPAR-per-core mode detected. KVM may not be usable.\n");
}
}
/* Called from head.S, thus no prototype. */
void __noreturn __nomcount main_cpu_entry(const void *fdt);
void __noreturn __nomcount main_cpu_entry(const void *fdt)
{
/*
* WARNING: At this point. the timebases have
* *not* been synchronized yet. Do not use any timebase
* related functions for timeouts etc... unless you can cope
* with the speed being some random core clock divider and
* the value jumping backward when the synchronization actually
* happens (in chiptod_init() below).
*
* Also the current cpu_thread() struct is not initialized
* either so we need to clear it out first thing first (without
* putting any other useful info in there jus yet) otherwise
* printf an locks are going to play funny games with "con_suspend"
*/
pre_init_boot_cpu();
/*
* Point to our mem console
*/
debug_descriptor.memcons_phys = cpu_to_be64((uint64_t)&memcons);
/*
* Before first printk, ensure console buffer is clear or
* reading tools might think it has wrapped
*/
clear_console();
/* Backup previous vectors as this could contain a kernel
* image.
*/
memcpy_null(old_vectors, NULL, EXCEPTION_VECTORS_END);
/*
* Some boot firmwares enter OPAL with MSR[ME]=1, as they presumably
* handle machine checks until we take over. As we overwrite the
* previous exception vectors with our own handlers, disable MSR[ME].
* This could be done atomically by patching in a branch then patching
* it out last, but that's a lot of effort.
*/
disable_machine_check();
/* Copy all vectors down to 0 */
copy_exception_vectors();
/* Enable trap based asserts */
patch_traps(true);
/*
* Enable MSR[ME] bit so we can take MCEs. We don't currently
* recover, but we print some useful information.
*/
enable_machine_check();
mtmsrd(MSR_RI, 1);
/* Setup a NULL catcher to catch accidental NULL ptr calls */
setup_branch_null_catcher();
/* Call library constructors */
do_ctors();
prlog(PR_NOTICE, "OPAL %s%s starting...\n", version, DEBUG_STR);
prlog(PR_DEBUG, "initial console log level: memory %d, driver %d\n",
(debug_descriptor.console_log_levels >> 4),
(debug_descriptor.console_log_levels & 0x0f));
prlog(PR_TRACE, "OPAL is Powered By Linked-List Technology.\n");
#ifdef SKIBOOT_GCOV
skiboot_gcov_done();
#endif
/* Initialize boot cpu's cpu_thread struct */
init_boot_cpu();
/* Now locks can be used */
init_locks();
/* Create the OPAL call table early on, entries can be overridden
* later on (FSP console code for example)
*/
opal_table_init();
/* Init the physical map table so we can start mapping things */
phys_map_init(mfspr(SPR_PVR));
/*
* If we are coming in with a flat device-tree, we expand it
* now. Else look for HDAT and create a device-tree from them
*
* Hack alert: When entering via the OPAL entry point, fdt
* is set to -1, we record that and pass it to parse_hdat
*/
dt_root = dt_new_root("");
if (fdt == (void *)-1ul) {
if (parse_hdat(true) < 0)
abort();
} else if (fdt == NULL) {
if (parse_hdat(false) < 0)
abort();
} else {
dt_expand(fdt);
}
dt_add_cpufeatures(dt_root);
/* Now that we have a full devicetree, verify that we aren't on fire. */
per_thread_sanity_checks();
/*
* From there, we follow a fairly strict initialization order.
*
* First we need to build up our chip data structures and initialize
* XSCOM which will be needed for a number of susbequent things.
*
* We want XSCOM available as early as the platform probe in case the
* probe requires some HW accesses.
*
* We also initialize the FSI master at that point in case we need
* to access chips via that path early on.
*/
init_chips();
xscom_init();
mfsi_init();
/*
* Direct controls facilities provides some controls over CPUs
* using scoms.
*/
direct_controls_init();
/*
* Put various bits & pieces in device-tree that might not
* already be there such as the /chosen node if not there yet,
* the ICS node, etc... This can potentially use XSCOM
*/
dt_init_misc();
/*
* Initialize LPC (P8 and beyond) so we can get to UART, BMC and
* other system controller. This is done before probe_platform
* so that the platform probing code can access an external
* BMC if needed.
*/
lpc_init();
/*
* This should be done before mem_region_init, so the stack
* region length can be set according to the maximum PIR.
*/
init_cpu_max_pir();
/*
* Now, we init our memory map from the device-tree, and immediately
* reserve areas which we know might contain data coming from
* HostBoot. We need to do these things before we start doing
* allocations outside of our heap, such as chip local allocs,
* otherwise we might clobber those data.
*/
mem_region_init();
/*
* Reserve memory required to capture OPAL dump. This should be done
* immediately after mem_region_init to avoid any clash with local
* memory allocation.
*/
opal_mpipl_reserve_mem();
/* Reserve HOMER and OCC area */
homer_init();
/* Initialize the rest of the cpu thread structs */
init_all_cpus();
if (proc_gen == proc_gen_p9 || proc_gen == proc_gen_p10 || proc_gen == proc_gen_p11)
cpu_set_ipi_enable(true);
/* Once all CPU are up apply this workaround */
mask_pc_system_xstop();
/* P9/10 may be in LPAR-per-core mode, which is incompatible with KVM */
probe_lpar_per_core();
/* Add the /opal node to the device-tree */
add_opal_node();
/*
* We probe the platform now. This means the platform probe gets
* the opportunity to reserve additional areas of memory if needed.
*
* Note: Timebases still not synchronized.
*/
probe_platform();
/* Allocate our split trace buffers now. Depends add_opal_node() */
init_trace_buffers();
/* On P8, get the ICPs and make sure they are in a sane state */
init_interrupts();
if (proc_gen == proc_gen_p8)
cpu_set_ipi_enable(true);
/* On P9 and P10, initialize XIVE */
if (proc_gen == proc_gen_p9)
init_xive();
else if (proc_gen == proc_gen_p10 || proc_gen == proc_gen_p11)
xive2_init();
/* Grab centaurs from device-tree if present (only on FSP-less) */
centaur_init();
/* initialize ocmb scom-controller */
ocmb_init();
/* Initialize PSI (depends on probe_platform being called) */
psi_init();
/* Initialize/enable LPC interrupts. This must be done after the
* PSI interface has been initialized since it serves as an interrupt
* source for LPC interrupts.
*/
lpc_init_interrupts();
/* Call in secondary CPUs */
cpu_bringup();
/* We can now overwrite the 0x100 vector as we are no longer being
* entered there.
*/
copy_sreset_vector();
/* We can now do NAP mode */
cpu_set_sreset_enable(true);
/*
* Synchronize time bases. Prior to chiptod_init() the timebase
* is free-running at a frequency based on the core clock rather
* than being synchronised to the ChipTOD network. This means
* that the timestamps in early boot might be a little off compared
* to wall clock time.
*/
chiptod_init();
/* Initialize P9 DIO */
p9_dio_init();
/*
* SBE uses TB value for scheduling timer. Hence init after
* chiptod init
*/
p9_sbe_init();
/* Initialize i2c */
p8_i2c_init();
/* Register routine to dispatch and read sensors */
sensor_init();
/*
* Initialize the opal messaging before platform.init as we are
* getting request to queue occ load opal message when host services
* got load occ request from FSP
*/
opal_init_msg();
/*
* We have initialized the basic HW, we can now call into the
* platform to perform subsequent inits, such as establishing
* communication with the FSP or starting IPMI.
*/
if (platform.init)
platform.init();
/* Read in NVRAM and set it up */
nvram_init();
/* Set the console level */
console_log_level();
/* Secure/Trusted Boot init. We look for /ibm,secureboot in DT */
secureboot_init();
trustedboot_init();
/* Secure variables init, handled by platform */
if (platform.secvar_init && is_fw_secureboot())
platform.secvar_init();
/*
* BMC platforms load version information from flash after
* secure/trustedboot init.
*/
if (platform.bmc)
flash_fw_version_preload();
/* preload the IMC catalog dtb */
imc_catalog_preload();
/* Install the OPAL Console handlers */
init_opal_console();
/*
* Some platforms set a flag to wait for SBE validation to be
* performed by the BMC. If this occurs it leaves the SBE in a
* bad state and the system will reboot at this point.
*/
if (platform.seeprom_update)
platform.seeprom_update();
/* Init SLW related stuff, including fastsleep */
slw_init();
op_display(OP_LOG, OP_MOD_INIT, 0x0002);
/*
* On some POWER9 BMC systems, we need to initialise the OCC
* before the NPU to facilitate NVLink/OpenCAPI presence
* detection, so we set it up as early as possible. On FSP
* systems, Hostboot starts booting the OCC later, so we delay
* OCC initialisation as late as possible to give it the
* maximum time to boot up.
*/
if (platform.bmc)
occ_pstates_init();
pci_nvram_init();
preload_capp_ucode();
start_preload_kernel();
/* Catalog decompression routine */
imc_decompress_catalog();
/* Probe all HWPROBE hardware we have code linked for */
probe_hardware();
/* Initialize PCI */
pci_init_slots();
/* Add OPAL timer related properties */
late_init_timers();
/* Setup ibm,firmware-versions if able */
if (platform.bmc) {
flash_dt_add_fw_version();
#ifdef CONFIG_PLDM
pldm_fru_dt_add_bmc_version();
#else
ipmi_dt_add_bmc_info();
#endif
}
#ifdef CONFIG_PLDM
pldm_platform_send_progress_state_change(
PLDM_STATE_SET_BOOT_PROG_STATE_PCI_RESORUCE_CONFIG);
#else
ipmi_set_fw_progress_sensor(IPMI_FW_PCI_INIT);
#endif
/*
* These last few things must be done as late as possible
* because they rely on various other things having been setup,
* for example, add_opal_interrupts() will add all the interrupt
* sources that are going to the firmware. We can't add a new one
* after that call. Similarly, the mem_region calls will construct
* the reserve maps in the DT so we shouldn't affect the memory
* regions after that
*/
/* Create the LPC bus interrupt-map on P9 */
lpc_finalize_interrupts();
/* Add the list of interrupts going to OPAL */
add_opal_interrupts();
/* Init In-Memory Collection related stuff (load the IMC dtb into memory) */
imc_init();
/* Disable protected execution facility in BML */
cpu_disable_pef();
/* export the trace buffers */
trace_add_dt_props();
/* Now release parts of memory nodes we haven't used ourselves... */
mem_region_release_unused();
/* ... and add remaining reservations to the DT */
mem_region_add_dt_reserved();
/*
* Update /ibm,secureboot/ibm,cvc/memory-region to point to
* /reserved-memory/secure-crypt-algo-code instead of
* /ibm,hostboot/reserved-memory/secure-crypt-algo-code.
*/
cvc_update_reserved_memory_phandle();
prd_register_reserved_memory();
load_and_boot_kernel(false);
}
void __noreturn __secondary_cpu_entry(void)
{
struct cpu_thread *cpu = this_cpu();
/* Secondary CPU called in */
cpu_callin(cpu);
enable_machine_check();
mtmsrd(MSR_RI, 1);
/* Some XIVE setup */
if (proc_gen == proc_gen_p9)
xive_cpu_callin(cpu);
else if (proc_gen == proc_gen_p10 || proc_gen == proc_gen_p11)
xive2_cpu_callin(cpu);
/* Wait for work to do */
while(true) {
if (cpu_check_jobs(cpu))
cpu_process_jobs();
else
cpu_idle_job();
}
}
/* Called from head.S, thus no prototype. */
void __noreturn __nomcount secondary_cpu_entry(void);
void __noreturn __nomcount secondary_cpu_entry(void)
{
struct cpu_thread *cpu = this_cpu();
per_thread_sanity_checks();
prlog(PR_DEBUG, "INIT: CPU PIR 0x%04x called in\n", cpu->pir);
__secondary_cpu_entry();
}
|