1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
|
/*
* Helpers for floating point instructions.
*
* Copyright (c) 2007 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "cpu.h"
#include "exec/helper-proto.h"
#include "fpu/softfloat.h"
#define FP_STATUS (env->fp_status)
void helper_setroundmode(CPUAlphaState *env, uint32_t val)
{
set_float_rounding_mode(val, &FP_STATUS);
}
void helper_setflushzero(CPUAlphaState *env, uint32_t val)
{
set_flush_to_zero(val, &FP_STATUS);
}
void helper_fp_exc_clear(CPUAlphaState *env)
{
set_float_exception_flags(0, &FP_STATUS);
}
uint32_t helper_fp_exc_get(CPUAlphaState *env)
{
return get_float_exception_flags(&FP_STATUS);
}
static inline void inline_fp_exc_raise(CPUAlphaState *env, uintptr_t retaddr,
uint32_t exc, uint32_t regno)
{
if (exc) {
uint32_t hw_exc = 0;
if (exc & float_flag_invalid) {
hw_exc |= EXC_M_INV;
}
if (exc & float_flag_divbyzero) {
hw_exc |= EXC_M_DZE;
}
if (exc & float_flag_overflow) {
hw_exc |= EXC_M_FOV;
}
if (exc & float_flag_underflow) {
hw_exc |= EXC_M_UNF;
}
if (exc & float_flag_inexact) {
hw_exc |= EXC_M_INE;
}
arith_excp(env, retaddr, hw_exc, 1ull << regno);
}
}
/* Raise exceptions for ieee fp insns without software completion.
In that case there are no exceptions that don't trap; the mask
doesn't apply. */
void helper_fp_exc_raise(CPUAlphaState *env, uint32_t exc, uint32_t regno)
{
inline_fp_exc_raise(env, GETPC(), exc, regno);
}
/* Raise exceptions for ieee fp insns with software completion. */
void helper_fp_exc_raise_s(CPUAlphaState *env, uint32_t exc, uint32_t regno)
{
if (exc) {
env->fpcr_exc_status |= exc;
exc &= ~env->fpcr_exc_mask;
inline_fp_exc_raise(env, GETPC(), exc, regno);
}
}
/* Input handing without software completion. Trap for all
non-finite numbers. */
void helper_ieee_input(CPUAlphaState *env, uint64_t val)
{
uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
uint64_t frac = val & 0xfffffffffffffull;
if (exp == 0) {
/* Denormals without DNZ set raise an exception. */
if (frac != 0 && !env->fp_status.flush_inputs_to_zero) {
arith_excp(env, GETPC(), EXC_M_UNF, 0);
}
} else if (exp == 0x7ff) {
/* Infinity or NaN. */
/* ??? I'm not sure these exception bit flags are correct. I do
know that the Linux kernel, at least, doesn't rely on them and
just emulates the insn to figure out what exception to use. */
arith_excp(env, GETPC(), frac ? EXC_M_INV : EXC_M_FOV, 0);
}
}
/* Similar, but does not trap for infinities. Used for comparisons. */
void helper_ieee_input_cmp(CPUAlphaState *env, uint64_t val)
{
uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
uint64_t frac = val & 0xfffffffffffffull;
if (exp == 0) {
/* Denormals without DNZ set raise an exception. */
if (frac != 0 && !env->fp_status.flush_inputs_to_zero) {
arith_excp(env, GETPC(), EXC_M_UNF, 0);
}
} else if (exp == 0x7ff && frac) {
/* NaN. */
arith_excp(env, GETPC(), EXC_M_INV, 0);
}
}
/* F floating (VAX) */
static uint64_t float32_to_f(float32 fa)
{
uint64_t r, exp, mant, sig;
CPU_FloatU a;
a.f = fa;
sig = ((uint64_t)a.l & 0x80000000) << 32;
exp = (a.l >> 23) & 0xff;
mant = ((uint64_t)a.l & 0x007fffff) << 29;
if (exp == 255) {
/* NaN or infinity */
r = 1; /* VAX dirty zero */
} else if (exp == 0) {
if (mant == 0) {
/* Zero */
r = 0;
} else {
/* Denormalized */
r = sig | ((exp + 1) << 52) | mant;
}
} else {
if (exp >= 253) {
/* Overflow */
r = 1; /* VAX dirty zero */
} else {
r = sig | ((exp + 2) << 52);
}
}
return r;
}
static float32 f_to_float32(CPUAlphaState *env, uintptr_t retaddr, uint64_t a)
{
uint32_t exp, mant_sig;
CPU_FloatU r;
exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
if (unlikely(!exp && mant_sig)) {
/* Reserved operands / Dirty zero */
dynamic_excp(env, retaddr, EXCP_OPCDEC, 0);
}
if (exp < 3) {
/* Underflow */
r.l = 0;
} else {
r.l = ((exp - 2) << 23) | mant_sig;
}
return r.f;
}
uint32_t helper_f_to_memory(uint64_t a)
{
uint32_t r;
r = (a & 0x00001fffe0000000ull) >> 13;
r |= (a & 0x07ffe00000000000ull) >> 45;
r |= (a & 0xc000000000000000ull) >> 48;
return r;
}
uint64_t helper_memory_to_f(uint32_t a)
{
uint64_t r;
r = ((uint64_t)(a & 0x0000c000)) << 48;
r |= ((uint64_t)(a & 0x003fffff)) << 45;
r |= ((uint64_t)(a & 0xffff0000)) << 13;
if (!(a & 0x00004000)) {
r |= 0x7ll << 59;
}
return r;
}
/* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong. We should
either implement VAX arithmetic properly or just signal invalid opcode. */
uint64_t helper_addf(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float32 fa, fb, fr;
fa = f_to_float32(env, GETPC(), a);
fb = f_to_float32(env, GETPC(), b);
fr = float32_add(fa, fb, &FP_STATUS);
return float32_to_f(fr);
}
uint64_t helper_subf(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float32 fa, fb, fr;
fa = f_to_float32(env, GETPC(), a);
fb = f_to_float32(env, GETPC(), b);
fr = float32_sub(fa, fb, &FP_STATUS);
return float32_to_f(fr);
}
uint64_t helper_mulf(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float32 fa, fb, fr;
fa = f_to_float32(env, GETPC(), a);
fb = f_to_float32(env, GETPC(), b);
fr = float32_mul(fa, fb, &FP_STATUS);
return float32_to_f(fr);
}
uint64_t helper_divf(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float32 fa, fb, fr;
fa = f_to_float32(env, GETPC(), a);
fb = f_to_float32(env, GETPC(), b);
fr = float32_div(fa, fb, &FP_STATUS);
return float32_to_f(fr);
}
uint64_t helper_sqrtf(CPUAlphaState *env, uint64_t t)
{
float32 ft, fr;
ft = f_to_float32(env, GETPC(), t);
fr = float32_sqrt(ft, &FP_STATUS);
return float32_to_f(fr);
}
/* G floating (VAX) */
static uint64_t float64_to_g(float64 fa)
{
uint64_t r, exp, mant, sig;
CPU_DoubleU a;
a.d = fa;
sig = a.ll & 0x8000000000000000ull;
exp = (a.ll >> 52) & 0x7ff;
mant = a.ll & 0x000fffffffffffffull;
if (exp == 2047) {
/* NaN or infinity */
r = 1; /* VAX dirty zero */
} else if (exp == 0) {
if (mant == 0) {
/* Zero */
r = 0;
} else {
/* Denormalized */
r = sig | ((exp + 1) << 52) | mant;
}
} else {
if (exp >= 2045) {
/* Overflow */
r = 1; /* VAX dirty zero */
} else {
r = sig | ((exp + 2) << 52);
}
}
return r;
}
static float64 g_to_float64(CPUAlphaState *env, uintptr_t retaddr, uint64_t a)
{
uint64_t exp, mant_sig;
CPU_DoubleU r;
exp = (a >> 52) & 0x7ff;
mant_sig = a & 0x800fffffffffffffull;
if (!exp && mant_sig) {
/* Reserved operands / Dirty zero */
dynamic_excp(env, retaddr, EXCP_OPCDEC, 0);
}
if (exp < 3) {
/* Underflow */
r.ll = 0;
} else {
r.ll = ((exp - 2) << 52) | mant_sig;
}
return r.d;
}
uint64_t helper_g_to_memory(uint64_t a)
{
uint64_t r;
r = (a & 0x000000000000ffffull) << 48;
r |= (a & 0x00000000ffff0000ull) << 16;
r |= (a & 0x0000ffff00000000ull) >> 16;
r |= (a & 0xffff000000000000ull) >> 48;
return r;
}
uint64_t helper_memory_to_g(uint64_t a)
{
uint64_t r;
r = (a & 0x000000000000ffffull) << 48;
r |= (a & 0x00000000ffff0000ull) << 16;
r |= (a & 0x0000ffff00000000ull) >> 16;
r |= (a & 0xffff000000000000ull) >> 48;
return r;
}
uint64_t helper_addg(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb, fr;
fa = g_to_float64(env, GETPC(), a);
fb = g_to_float64(env, GETPC(), b);
fr = float64_add(fa, fb, &FP_STATUS);
return float64_to_g(fr);
}
uint64_t helper_subg(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb, fr;
fa = g_to_float64(env, GETPC(), a);
fb = g_to_float64(env, GETPC(), b);
fr = float64_sub(fa, fb, &FP_STATUS);
return float64_to_g(fr);
}
uint64_t helper_mulg(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb, fr;
fa = g_to_float64(env, GETPC(), a);
fb = g_to_float64(env, GETPC(), b);
fr = float64_mul(fa, fb, &FP_STATUS);
return float64_to_g(fr);
}
uint64_t helper_divg(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb, fr;
fa = g_to_float64(env, GETPC(), a);
fb = g_to_float64(env, GETPC(), b);
fr = float64_div(fa, fb, &FP_STATUS);
return float64_to_g(fr);
}
uint64_t helper_sqrtg(CPUAlphaState *env, uint64_t a)
{
float64 fa, fr;
fa = g_to_float64(env, GETPC(), a);
fr = float64_sqrt(fa, &FP_STATUS);
return float64_to_g(fr);
}
/* S floating (single) */
/* Taken from linux/arch/alpha/kernel/traps.c, s_mem_to_reg. */
static inline uint64_t float32_to_s_int(uint32_t fi)
{
uint32_t frac = fi & 0x7fffff;
uint32_t sign = fi >> 31;
uint32_t exp_msb = (fi >> 30) & 1;
uint32_t exp_low = (fi >> 23) & 0x7f;
uint32_t exp;
exp = (exp_msb << 10) | exp_low;
if (exp_msb) {
if (exp_low == 0x7f) {
exp = 0x7ff;
}
} else {
if (exp_low != 0x00) {
exp |= 0x380;
}
}
return (((uint64_t)sign << 63)
| ((uint64_t)exp << 52)
| ((uint64_t)frac << 29));
}
static inline uint64_t float32_to_s(float32 fa)
{
CPU_FloatU a;
a.f = fa;
return float32_to_s_int(a.l);
}
static inline uint32_t s_to_float32_int(uint64_t a)
{
return ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff);
}
static inline float32 s_to_float32(uint64_t a)
{
CPU_FloatU r;
r.l = s_to_float32_int(a);
return r.f;
}
uint32_t helper_s_to_memory(uint64_t a)
{
return s_to_float32_int(a);
}
uint64_t helper_memory_to_s(uint32_t a)
{
return float32_to_s_int(a);
}
uint64_t helper_adds(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float32 fa, fb, fr;
fa = s_to_float32(a);
fb = s_to_float32(b);
fr = float32_add(fa, fb, &FP_STATUS);
return float32_to_s(fr);
}
uint64_t helper_subs(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float32 fa, fb, fr;
fa = s_to_float32(a);
fb = s_to_float32(b);
fr = float32_sub(fa, fb, &FP_STATUS);
return float32_to_s(fr);
}
uint64_t helper_muls(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float32 fa, fb, fr;
fa = s_to_float32(a);
fb = s_to_float32(b);
fr = float32_mul(fa, fb, &FP_STATUS);
return float32_to_s(fr);
}
uint64_t helper_divs(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float32 fa, fb, fr;
fa = s_to_float32(a);
fb = s_to_float32(b);
fr = float32_div(fa, fb, &FP_STATUS);
return float32_to_s(fr);
}
uint64_t helper_sqrts(CPUAlphaState *env, uint64_t a)
{
float32 fa, fr;
fa = s_to_float32(a);
fr = float32_sqrt(fa, &FP_STATUS);
return float32_to_s(fr);
}
/* T floating (double) */
static inline float64 t_to_float64(uint64_t a)
{
/* Memory format is the same as float64 */
CPU_DoubleU r;
r.ll = a;
return r.d;
}
static inline uint64_t float64_to_t(float64 fa)
{
/* Memory format is the same as float64 */
CPU_DoubleU r;
r.d = fa;
return r.ll;
}
uint64_t helper_addt(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb, fr;
fa = t_to_float64(a);
fb = t_to_float64(b);
fr = float64_add(fa, fb, &FP_STATUS);
return float64_to_t(fr);
}
uint64_t helper_subt(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb, fr;
fa = t_to_float64(a);
fb = t_to_float64(b);
fr = float64_sub(fa, fb, &FP_STATUS);
return float64_to_t(fr);
}
uint64_t helper_mult(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb, fr;
fa = t_to_float64(a);
fb = t_to_float64(b);
fr = float64_mul(fa, fb, &FP_STATUS);
return float64_to_t(fr);
}
uint64_t helper_divt(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb, fr;
fa = t_to_float64(a);
fb = t_to_float64(b);
fr = float64_div(fa, fb, &FP_STATUS);
return float64_to_t(fr);
}
uint64_t helper_sqrtt(CPUAlphaState *env, uint64_t a)
{
float64 fa, fr;
fa = t_to_float64(a);
fr = float64_sqrt(fa, &FP_STATUS);
return float64_to_t(fr);
}
/* Comparisons */
uint64_t helper_cmptun(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb;
fa = t_to_float64(a);
fb = t_to_float64(b);
if (float64_unordered_quiet(fa, fb, &FP_STATUS)) {
return 0x4000000000000000ULL;
} else {
return 0;
}
}
uint64_t helper_cmpteq(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb;
fa = t_to_float64(a);
fb = t_to_float64(b);
if (float64_eq_quiet(fa, fb, &FP_STATUS)) {
return 0x4000000000000000ULL;
} else {
return 0;
}
}
uint64_t helper_cmptle(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb;
fa = t_to_float64(a);
fb = t_to_float64(b);
if (float64_le(fa, fb, &FP_STATUS)) {
return 0x4000000000000000ULL;
} else {
return 0;
}
}
uint64_t helper_cmptlt(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb;
fa = t_to_float64(a);
fb = t_to_float64(b);
if (float64_lt(fa, fb, &FP_STATUS)) {
return 0x4000000000000000ULL;
} else {
return 0;
}
}
uint64_t helper_cmpgeq(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb;
fa = g_to_float64(env, GETPC(), a);
fb = g_to_float64(env, GETPC(), b);
if (float64_eq_quiet(fa, fb, &FP_STATUS)) {
return 0x4000000000000000ULL;
} else {
return 0;
}
}
uint64_t helper_cmpgle(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb;
fa = g_to_float64(env, GETPC(), a);
fb = g_to_float64(env, GETPC(), b);
if (float64_le(fa, fb, &FP_STATUS)) {
return 0x4000000000000000ULL;
} else {
return 0;
}
}
uint64_t helper_cmpglt(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb;
fa = g_to_float64(env, GETPC(), a);
fb = g_to_float64(env, GETPC(), b);
if (float64_lt(fa, fb, &FP_STATUS)) {
return 0x4000000000000000ULL;
} else {
return 0;
}
}
/* Floating point format conversion */
uint64_t helper_cvtts(CPUAlphaState *env, uint64_t a)
{
float64 fa;
float32 fr;
fa = t_to_float64(a);
fr = float64_to_float32(fa, &FP_STATUS);
return float32_to_s(fr);
}
uint64_t helper_cvtst(CPUAlphaState *env, uint64_t a)
{
float32 fa;
float64 fr;
fa = s_to_float32(a);
fr = float32_to_float64(fa, &FP_STATUS);
return float64_to_t(fr);
}
uint64_t helper_cvtqs(CPUAlphaState *env, uint64_t a)
{
float32 fr = int64_to_float32(a, &FP_STATUS);
return float32_to_s(fr);
}
/* Implement float64 to uint64 conversion without saturation -- we must
supply the truncated result. This behaviour is used by the compiler
to get unsigned conversion for free with the same instruction.
The VI flag is set when overflow or inexact exceptions should be raised. */
static inline uint64_t inline_cvttq(CPUAlphaState *env, uint64_t a,
int roundmode, int VI)
{
uint64_t frac, ret = 0;
uint32_t exp, sign, exc = 0;
int shift;
sign = (a >> 63);
exp = (uint32_t)(a >> 52) & 0x7ff;
frac = a & 0xfffffffffffffull;
if (exp == 0) {
if (unlikely(frac != 0)) {
goto do_underflow;
}
} else if (exp == 0x7ff) {
exc = (frac ? float_flag_invalid : VI ? float_flag_overflow : 0);
} else {
/* Restore implicit bit. */
frac |= 0x10000000000000ull;
shift = exp - 1023 - 52;
if (shift >= 0) {
/* In this case the number is so large that we must shift
the fraction left. There is no rounding to do. */
if (shift < 63) {
ret = frac << shift;
if (VI && (ret >> shift) != frac) {
exc = float_flag_overflow;
}
}
} else {
uint64_t round;
/* In this case the number is smaller than the fraction as
represented by the 52 bit number. Here we must think
about rounding the result. Handle this by shifting the
fractional part of the number into the high bits of ROUND.
This will let us efficiently handle round-to-nearest. */
shift = -shift;
if (shift < 63) {
ret = frac >> shift;
round = frac << (64 - shift);
} else {
/* The exponent is so small we shift out everything.
Leave a sticky bit for proper rounding below. */
do_underflow:
round = 1;
}
if (round) {
exc = (VI ? float_flag_inexact : 0);
switch (roundmode) {
case float_round_nearest_even:
if (round == (1ull << 63)) {
/* Fraction is exactly 0.5; round to even. */
ret += (ret & 1);
} else if (round > (1ull << 63)) {
ret += 1;
}
break;
case float_round_to_zero:
break;
case float_round_up:
ret += 1 - sign;
break;
case float_round_down:
ret += sign;
break;
}
}
}
if (sign) {
ret = -ret;
}
}
if (unlikely(exc)) {
float_raise(exc, &FP_STATUS);
}
return ret;
}
uint64_t helper_cvttq(CPUAlphaState *env, uint64_t a)
{
return inline_cvttq(env, a, FP_STATUS.float_rounding_mode, 1);
}
uint64_t helper_cvttq_c(CPUAlphaState *env, uint64_t a)
{
return inline_cvttq(env, a, float_round_to_zero, 0);
}
uint64_t helper_cvttq_svic(CPUAlphaState *env, uint64_t a)
{
return inline_cvttq(env, a, float_round_to_zero, 1);
}
uint64_t helper_cvtqt(CPUAlphaState *env, uint64_t a)
{
float64 fr = int64_to_float64(a, &FP_STATUS);
return float64_to_t(fr);
}
uint64_t helper_cvtqf(CPUAlphaState *env, uint64_t a)
{
float32 fr = int64_to_float32(a, &FP_STATUS);
return float32_to_f(fr);
}
uint64_t helper_cvtgf(CPUAlphaState *env, uint64_t a)
{
float64 fa;
float32 fr;
fa = g_to_float64(env, GETPC(), a);
fr = float64_to_float32(fa, &FP_STATUS);
return float32_to_f(fr);
}
uint64_t helper_cvtgq(CPUAlphaState *env, uint64_t a)
{
float64 fa = g_to_float64(env, GETPC(), a);
return float64_to_int64_round_to_zero(fa, &FP_STATUS);
}
uint64_t helper_cvtqg(CPUAlphaState *env, uint64_t a)
{
float64 fr;
fr = int64_to_float64(a, &FP_STATUS);
return float64_to_g(fr);
}
void helper_fcvtql_v_input(CPUAlphaState *env, uint64_t val)
{
if (val != (int32_t)val) {
arith_excp(env, GETPC(), EXC_M_IOV, 0);
}
}
|