1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
|
/*
* QTest testcase for the MC146818 real-time clock
*
* Copyright IBM, Corp. 2012
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include <glib.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include "libqtest.h"
#include "hw/timer/mc146818rtc_regs.h"
static uint8_t base = 0x70;
static int bcd2dec(int value)
{
return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
}
static uint8_t cmos_read(uint8_t reg)
{
outb(base + 0, reg);
return inb(base + 1);
}
static void cmos_write(uint8_t reg, uint8_t val)
{
outb(base + 0, reg);
outb(base + 1, val);
}
static int tm_cmp(struct tm *lhs, struct tm *rhs)
{
time_t a, b;
struct tm d1, d2;
memcpy(&d1, lhs, sizeof(d1));
memcpy(&d2, rhs, sizeof(d2));
a = mktime(&d1);
b = mktime(&d2);
if (a < b) {
return -1;
} else if (a > b) {
return 1;
}
return 0;
}
#if 0
static void print_tm(struct tm *tm)
{
printf("%04d-%02d-%02d %02d:%02d:%02d\n",
tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
}
#endif
static void cmos_get_date_time(struct tm *date)
{
int base_year = 2000, hour_offset;
int sec, min, hour, mday, mon, year;
time_t ts;
struct tm dummy;
sec = cmos_read(RTC_SECONDS);
min = cmos_read(RTC_MINUTES);
hour = cmos_read(RTC_HOURS);
mday = cmos_read(RTC_DAY_OF_MONTH);
mon = cmos_read(RTC_MONTH);
year = cmos_read(RTC_YEAR);
if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
sec = bcd2dec(sec);
min = bcd2dec(min);
hour = bcd2dec(hour);
mday = bcd2dec(mday);
mon = bcd2dec(mon);
year = bcd2dec(year);
hour_offset = 80;
} else {
hour_offset = 0x80;
}
if ((cmos_read(0x0B) & REG_B_24H) == 0) {
if (hour >= hour_offset) {
hour -= hour_offset;
hour += 12;
}
}
ts = time(NULL);
localtime_r(&ts, &dummy);
date->tm_isdst = dummy.tm_isdst;
date->tm_sec = sec;
date->tm_min = min;
date->tm_hour = hour;
date->tm_mday = mday;
date->tm_mon = mon - 1;
date->tm_year = base_year + year - 1900;
#ifndef __sun__
date->tm_gmtoff = 0;
#endif
ts = mktime(date);
}
static void check_time(int wiggle)
{
struct tm start, date[4], end;
struct tm *datep;
time_t ts;
/*
* This check assumes a few things. First, we cannot guarantee that we get
* a consistent reading from the wall clock because we may hit an edge of
* the clock while reading. To work around this, we read four clock readings
* such that at least two of them should match. We need to assume that one
* reading is corrupt so we need four readings to ensure that we have at
* least two consecutive identical readings
*
* It's also possible that we'll cross an edge reading the host clock so
* simply check to make sure that the clock reading is within the period of
* when we expect it to be.
*/
ts = time(NULL);
gmtime_r(&ts, &start);
cmos_get_date_time(&date[0]);
cmos_get_date_time(&date[1]);
cmos_get_date_time(&date[2]);
cmos_get_date_time(&date[3]);
ts = time(NULL);
gmtime_r(&ts, &end);
if (tm_cmp(&date[0], &date[1]) == 0) {
datep = &date[0];
} else if (tm_cmp(&date[1], &date[2]) == 0) {
datep = &date[1];
} else if (tm_cmp(&date[2], &date[3]) == 0) {
datep = &date[2];
} else {
g_assert_not_reached();
}
if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
long t, s;
start.tm_isdst = datep->tm_isdst;
t = (long)mktime(datep);
s = (long)mktime(&start);
if (t < s) {
g_test_message("RTC is %ld second(s) behind wall-clock\n", (s - t));
} else {
g_test_message("RTC is %ld second(s) ahead of wall-clock\n", (t - s));
}
g_assert_cmpint(ABS(t - s), <=, wiggle);
}
}
static int wiggle = 2;
static void set_year_20xx(void)
{
/* Set BCD mode */
cmos_write(RTC_REG_B, REG_B_24H);
cmos_write(RTC_REG_A, 0x76);
cmos_write(RTC_YEAR, 0x11);
cmos_write(RTC_CENTURY, 0x20);
cmos_write(RTC_MONTH, 0x02);
cmos_write(RTC_DAY_OF_MONTH, 0x02);
cmos_write(RTC_HOURS, 0x02);
cmos_write(RTC_MINUTES, 0x04);
cmos_write(RTC_SECONDS, 0x58);
cmos_write(RTC_REG_A, 0x26);
g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
if (sizeof(time_t) == 4) {
return;
}
/* Set a date in 2080 to ensure there is no year-2038 overflow. */
cmos_write(RTC_REG_A, 0x76);
cmos_write(RTC_YEAR, 0x80);
cmos_write(RTC_REG_A, 0x26);
g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
cmos_write(RTC_REG_A, 0x76);
cmos_write(RTC_YEAR, 0x11);
cmos_write(RTC_REG_A, 0x26);
g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
}
static void set_year_1980(void)
{
/* Set BCD mode */
cmos_write(RTC_REG_B, REG_B_24H);
cmos_write(RTC_REG_A, 0x76);
cmos_write(RTC_YEAR, 0x80);
cmos_write(RTC_CENTURY, 0x19);
cmos_write(RTC_MONTH, 0x02);
cmos_write(RTC_DAY_OF_MONTH, 0x02);
cmos_write(RTC_HOURS, 0x02);
cmos_write(RTC_MINUTES, 0x04);
cmos_write(RTC_SECONDS, 0x58);
cmos_write(RTC_REG_A, 0x26);
g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19);
}
static void bcd_check_time(void)
{
/* Set BCD mode */
cmos_write(RTC_REG_B, REG_B_24H);
check_time(wiggle);
}
static void dec_check_time(void)
{
/* Set DEC mode */
cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
check_time(wiggle);
}
static void alarm_time(void)
{
struct tm now;
time_t ts;
int i;
ts = time(NULL);
gmtime_r(&ts, &now);
/* set DEC mode */
cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
g_assert(!get_irq(RTC_ISA_IRQ));
cmos_read(RTC_REG_C);
now.tm_sec = (now.tm_sec + 2) % 60;
cmos_write(RTC_SECONDS_ALARM, now.tm_sec);
cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE);
for (i = 0; i < 2 + wiggle; i++) {
if (get_irq(RTC_ISA_IRQ)) {
break;
}
clock_step(1000000000);
}
g_assert(get_irq(RTC_ISA_IRQ));
g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
g_assert(cmos_read(RTC_REG_C) == 0);
}
static void set_time(int mode, int h, int m, int s)
{
/* set BCD 12 hour mode */
cmos_write(RTC_REG_B, mode);
cmos_write(RTC_REG_A, 0x76);
cmos_write(RTC_HOURS, h);
cmos_write(RTC_MINUTES, m);
cmos_write(RTC_SECONDS, s);
cmos_write(RTC_REG_A, 0x26);
}
#define assert_time(h, m, s) \
do { \
g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
} while(0)
static void basic_12h_bcd(void)
{
/* set BCD 12 hour mode */
set_time(0, 0x81, 0x59, 0x00);
clock_step(1000000000LL);
assert_time(0x81, 0x59, 0x01);
clock_step(59000000000LL);
assert_time(0x82, 0x00, 0x00);
/* test BCD wraparound */
set_time(0, 0x09, 0x59, 0x59);
clock_step(60000000000LL);
assert_time(0x10, 0x00, 0x59);
/* 12 AM -> 1 AM */
set_time(0, 0x12, 0x59, 0x59);
clock_step(1000000000LL);
assert_time(0x01, 0x00, 0x00);
/* 12 PM -> 1 PM */
set_time(0, 0x92, 0x59, 0x59);
clock_step(1000000000LL);
assert_time(0x81, 0x00, 0x00);
/* 11 AM -> 12 PM */
set_time(0, 0x11, 0x59, 0x59);
clock_step(1000000000LL);
assert_time(0x92, 0x00, 0x00);
/* TODO: test day wraparound */
/* 11 PM -> 12 AM */
set_time(0, 0x91, 0x59, 0x59);
clock_step(1000000000LL);
assert_time(0x12, 0x00, 0x00);
/* TODO: test day wraparound */
}
static void basic_12h_dec(void)
{
/* set decimal 12 hour mode */
set_time(REG_B_DM, 0x81, 59, 0);
clock_step(1000000000LL);
assert_time(0x81, 59, 1);
clock_step(59000000000LL);
assert_time(0x82, 0, 0);
/* 12 PM -> 1 PM */
set_time(REG_B_DM, 0x8c, 59, 59);
clock_step(1000000000LL);
assert_time(0x81, 0, 0);
/* 12 AM -> 1 AM */
set_time(REG_B_DM, 0x0c, 59, 59);
clock_step(1000000000LL);
assert_time(0x01, 0, 0);
/* 11 AM -> 12 PM */
set_time(REG_B_DM, 0x0b, 59, 59);
clock_step(1000000000LL);
assert_time(0x8c, 0, 0);
/* 11 PM -> 12 AM */
set_time(REG_B_DM, 0x8b, 59, 59);
clock_step(1000000000LL);
assert_time(0x0c, 0, 0);
/* TODO: test day wraparound */
}
static void basic_24h_bcd(void)
{
/* set BCD 24 hour mode */
set_time(REG_B_24H, 0x09, 0x59, 0x00);
clock_step(1000000000LL);
assert_time(0x09, 0x59, 0x01);
clock_step(59000000000LL);
assert_time(0x10, 0x00, 0x00);
/* test BCD wraparound */
set_time(REG_B_24H, 0x09, 0x59, 0x00);
clock_step(60000000000LL);
assert_time(0x10, 0x00, 0x00);
/* TODO: test day wraparound */
set_time(REG_B_24H, 0x23, 0x59, 0x00);
clock_step(60000000000LL);
assert_time(0x00, 0x00, 0x00);
}
static void basic_24h_dec(void)
{
/* set decimal 24 hour mode */
set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
clock_step(1000000000LL);
assert_time(9, 59, 1);
clock_step(59000000000LL);
assert_time(10, 0, 0);
/* test BCD wraparound */
set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
clock_step(60000000000LL);
assert_time(10, 0, 0);
/* TODO: test day wraparound */
set_time(REG_B_24H | REG_B_DM, 23, 59, 0);
clock_step(60000000000LL);
assert_time(0, 0, 0);
}
static void am_pm_alarm(void)
{
cmos_write(RTC_MINUTES_ALARM, 0xC0);
cmos_write(RTC_SECONDS_ALARM, 0xC0);
/* set BCD 12 hour mode */
cmos_write(RTC_REG_B, 0);
/* Set time and alarm hour. */
cmos_write(RTC_REG_A, 0x76);
cmos_write(RTC_HOURS_ALARM, 0x82);
cmos_write(RTC_HOURS, 0x81);
cmos_write(RTC_MINUTES, 0x59);
cmos_write(RTC_SECONDS, 0x00);
cmos_read(RTC_REG_C);
cmos_write(RTC_REG_A, 0x26);
/* Check that alarm triggers when AM/PM is set. */
clock_step(60000000000LL);
g_assert(cmos_read(RTC_HOURS) == 0x82);
g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
/*
* Each of the following two tests takes over 60 seconds due to the time
* needed to report the PIT interrupts. Unfortunately, our PIT device
* model keeps counting even when GATE=0, so we cannot simply disable
* it in main().
*/
if (g_test_quick()) {
return;
}
/* set DEC 12 hour mode */
cmos_write(RTC_REG_B, REG_B_DM);
/* Set time and alarm hour. */
cmos_write(RTC_REG_A, 0x76);
cmos_write(RTC_HOURS_ALARM, 0x82);
cmos_write(RTC_HOURS, 3);
cmos_write(RTC_MINUTES, 0);
cmos_write(RTC_SECONDS, 0);
cmos_read(RTC_REG_C);
cmos_write(RTC_REG_A, 0x26);
/* Check that alarm triggers. */
clock_step(3600 * 11 * 1000000000LL);
g_assert(cmos_read(RTC_HOURS) == 0x82);
g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
/* Same as above, with inverted HOURS and HOURS_ALARM. */
cmos_write(RTC_REG_A, 0x76);
cmos_write(RTC_HOURS_ALARM, 2);
cmos_write(RTC_HOURS, 3);
cmos_write(RTC_MINUTES, 0);
cmos_write(RTC_SECONDS, 0);
cmos_read(RTC_REG_C);
cmos_write(RTC_REG_A, 0x26);
/* Check that alarm does not trigger if hours differ only by AM/PM. */
clock_step(3600 * 11 * 1000000000LL);
g_assert(cmos_read(RTC_HOURS) == 0x82);
g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0);
}
/* success if no crash or abort */
static void fuzz_registers(void)
{
unsigned int i;
for (i = 0; i < 1000; i++) {
uint8_t reg, val;
reg = (uint8_t)g_test_rand_int_range(0, 16);
val = (uint8_t)g_test_rand_int_range(0, 256);
cmos_write(reg, val);
cmos_read(reg);
}
}
static void register_b_set_flag(void)
{
/* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET);
cmos_write(RTC_REG_A, 0x76);
cmos_write(RTC_YEAR, 0x11);
cmos_write(RTC_CENTURY, 0x20);
cmos_write(RTC_MONTH, 0x02);
cmos_write(RTC_DAY_OF_MONTH, 0x02);
cmos_write(RTC_HOURS, 0x02);
cmos_write(RTC_MINUTES, 0x04);
cmos_write(RTC_SECONDS, 0x58);
cmos_write(RTC_REG_A, 0x26);
/* Since SET flag is still enabled, these are equality checks. */
g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
g_assert_cmpint(cmos_read(RTC_SECONDS), ==, 0x58);
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
/* Disable SET flag in Register B */
cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET);
g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
/* Since SET flag is disabled, this is an inequality check.
* We (reasonably) assume that no (sexagesimal) overflow occurs. */
g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
}
int main(int argc, char **argv)
{
QTestState *s = NULL;
int ret;
g_test_init(&argc, &argv, NULL);
s = qtest_start("-rtc clock=vm");
qtest_irq_intercept_in(s, "ioapic");
qtest_add_func("/rtc/check-time/bcd", bcd_check_time);
qtest_add_func("/rtc/check-time/dec", dec_check_time);
qtest_add_func("/rtc/alarm/interrupt", alarm_time);
qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm);
qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec);
qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd);
qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec);
qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd);
qtest_add_func("/rtc/set-year/20xx", set_year_20xx);
qtest_add_func("/rtc/set-year/1980", set_year_1980);
qtest_add_func("/rtc/misc/register_b_set_flag", register_b_set_flag);
qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers);
ret = g_test_run();
if (s) {
qtest_quit(s);
}
return ret;
}
|