1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
/*
* DMA helper functions
*
* Copyright (c) 2009 Red Hat
*
* This work is licensed under the terms of the GNU General Public License
* (GNU GPL), version 2 or later.
*/
#include "qemu/osdep.h"
#include "sysemu/block-backend.h"
#include "sysemu/dma.h"
#include "trace.h"
#include "qemu/thread.h"
#include "qemu/main-loop.h"
/* #define DEBUG_IOMMU */
int dma_memory_set(AddressSpace *as, dma_addr_t addr, uint8_t c, dma_addr_t len)
{
dma_barrier(as, DMA_DIRECTION_FROM_DEVICE);
#define FILLBUF_SIZE 512
uint8_t fillbuf[FILLBUF_SIZE];
int l;
bool error = false;
memset(fillbuf, c, FILLBUF_SIZE);
while (len > 0) {
l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
error |= address_space_rw(as, addr, MEMTXATTRS_UNSPECIFIED,
fillbuf, l, true);
len -= l;
addr += l;
}
return error;
}
void qemu_sglist_init(QEMUSGList *qsg, DeviceState *dev, int alloc_hint,
AddressSpace *as)
{
qsg->sg = g_malloc(alloc_hint * sizeof(ScatterGatherEntry));
qsg->nsg = 0;
qsg->nalloc = alloc_hint;
qsg->size = 0;
qsg->as = as;
qsg->dev = dev;
object_ref(OBJECT(dev));
}
void qemu_sglist_add(QEMUSGList *qsg, dma_addr_t base, dma_addr_t len)
{
if (qsg->nsg == qsg->nalloc) {
qsg->nalloc = 2 * qsg->nalloc + 1;
qsg->sg = g_realloc(qsg->sg, qsg->nalloc * sizeof(ScatterGatherEntry));
}
qsg->sg[qsg->nsg].base = base;
qsg->sg[qsg->nsg].len = len;
qsg->size += len;
++qsg->nsg;
}
void qemu_sglist_destroy(QEMUSGList *qsg)
{
object_unref(OBJECT(qsg->dev));
g_free(qsg->sg);
memset(qsg, 0, sizeof(*qsg));
}
typedef struct {
BlockAIOCB common;
AioContext *ctx;
BlockAIOCB *acb;
QEMUSGList *sg;
uint32_t align;
uint64_t offset;
DMADirection dir;
int sg_cur_index;
dma_addr_t sg_cur_byte;
QEMUIOVector iov;
QEMUBH *bh;
DMAIOFunc *io_func;
void *io_func_opaque;
} DMAAIOCB;
static void dma_blk_cb(void *opaque, int ret);
static void reschedule_dma(void *opaque)
{
DMAAIOCB *dbs = (DMAAIOCB *)opaque;
qemu_bh_delete(dbs->bh);
dbs->bh = NULL;
dma_blk_cb(dbs, 0);
}
static void dma_blk_unmap(DMAAIOCB *dbs)
{
int i;
for (i = 0; i < dbs->iov.niov; ++i) {
dma_memory_unmap(dbs->sg->as, dbs->iov.iov[i].iov_base,
dbs->iov.iov[i].iov_len, dbs->dir,
dbs->iov.iov[i].iov_len);
}
qemu_iovec_reset(&dbs->iov);
}
static void dma_complete(DMAAIOCB *dbs, int ret)
{
trace_dma_complete(dbs, ret, dbs->common.cb);
dma_blk_unmap(dbs);
if (dbs->common.cb) {
dbs->common.cb(dbs->common.opaque, ret);
}
qemu_iovec_destroy(&dbs->iov);
if (dbs->bh) {
qemu_bh_delete(dbs->bh);
dbs->bh = NULL;
}
qemu_aio_unref(dbs);
}
static void dma_blk_cb(void *opaque, int ret)
{
DMAAIOCB *dbs = (DMAAIOCB *)opaque;
dma_addr_t cur_addr, cur_len;
void *mem;
trace_dma_blk_cb(dbs, ret);
dbs->acb = NULL;
dbs->offset += dbs->iov.size;
if (dbs->sg_cur_index == dbs->sg->nsg || ret < 0) {
dma_complete(dbs, ret);
return;
}
dma_blk_unmap(dbs);
while (dbs->sg_cur_index < dbs->sg->nsg) {
cur_addr = dbs->sg->sg[dbs->sg_cur_index].base + dbs->sg_cur_byte;
cur_len = dbs->sg->sg[dbs->sg_cur_index].len - dbs->sg_cur_byte;
mem = dma_memory_map(dbs->sg->as, cur_addr, &cur_len, dbs->dir);
if (!mem)
break;
qemu_iovec_add(&dbs->iov, mem, cur_len);
dbs->sg_cur_byte += cur_len;
if (dbs->sg_cur_byte == dbs->sg->sg[dbs->sg_cur_index].len) {
dbs->sg_cur_byte = 0;
++dbs->sg_cur_index;
}
}
if (dbs->iov.size == 0) {
trace_dma_map_wait(dbs);
dbs->bh = aio_bh_new(dbs->ctx, reschedule_dma, dbs);
cpu_register_map_client(dbs->bh);
return;
}
if (!QEMU_IS_ALIGNED(dbs->iov.size, dbs->align)) {
qemu_iovec_discard_back(&dbs->iov,
QEMU_ALIGN_DOWN(dbs->iov.size, dbs->align));
}
dbs->acb = dbs->io_func(dbs->offset, &dbs->iov,
dma_blk_cb, dbs, dbs->io_func_opaque);
assert(dbs->acb);
}
static void dma_aio_cancel(BlockAIOCB *acb)
{
DMAAIOCB *dbs = container_of(acb, DMAAIOCB, common);
trace_dma_aio_cancel(dbs);
if (dbs->acb) {
blk_aio_cancel_async(dbs->acb);
}
if (dbs->bh) {
cpu_unregister_map_client(dbs->bh);
qemu_bh_delete(dbs->bh);
dbs->bh = NULL;
}
}
static AioContext *dma_get_aio_context(BlockAIOCB *acb)
{
DMAAIOCB *dbs = container_of(acb, DMAAIOCB, common);
return dbs->ctx;
}
static const AIOCBInfo dma_aiocb_info = {
.aiocb_size = sizeof(DMAAIOCB),
.cancel_async = dma_aio_cancel,
.get_aio_context = dma_get_aio_context,
};
BlockAIOCB *dma_blk_io(AioContext *ctx,
QEMUSGList *sg, uint64_t offset, uint32_t align,
DMAIOFunc *io_func, void *io_func_opaque,
BlockCompletionFunc *cb,
void *opaque, DMADirection dir)
{
DMAAIOCB *dbs = qemu_aio_get(&dma_aiocb_info, NULL, cb, opaque);
trace_dma_blk_io(dbs, io_func_opaque, offset, (dir == DMA_DIRECTION_TO_DEVICE));
dbs->acb = NULL;
dbs->sg = sg;
dbs->ctx = ctx;
dbs->offset = offset;
dbs->align = align;
dbs->sg_cur_index = 0;
dbs->sg_cur_byte = 0;
dbs->dir = dir;
dbs->io_func = io_func;
dbs->io_func_opaque = io_func_opaque;
dbs->bh = NULL;
qemu_iovec_init(&dbs->iov, sg->nsg);
dma_blk_cb(dbs, 0);
return &dbs->common;
}
static
BlockAIOCB *dma_blk_read_io_func(int64_t offset, QEMUIOVector *iov,
BlockCompletionFunc *cb, void *cb_opaque,
void *opaque)
{
BlockBackend *blk = opaque;
return blk_aio_preadv(blk, offset, iov, 0, cb, cb_opaque);
}
BlockAIOCB *dma_blk_read(BlockBackend *blk,
QEMUSGList *sg, uint64_t offset, uint32_t align,
void (*cb)(void *opaque, int ret), void *opaque)
{
return dma_blk_io(blk_get_aio_context(blk), sg, offset, align,
dma_blk_read_io_func, blk, cb, opaque,
DMA_DIRECTION_FROM_DEVICE);
}
static
BlockAIOCB *dma_blk_write_io_func(int64_t offset, QEMUIOVector *iov,
BlockCompletionFunc *cb, void *cb_opaque,
void *opaque)
{
BlockBackend *blk = opaque;
return blk_aio_pwritev(blk, offset, iov, 0, cb, cb_opaque);
}
BlockAIOCB *dma_blk_write(BlockBackend *blk,
QEMUSGList *sg, uint64_t offset, uint32_t align,
void (*cb)(void *opaque, int ret), void *opaque)
{
return dma_blk_io(blk_get_aio_context(blk), sg, offset, align,
dma_blk_write_io_func, blk, cb, opaque,
DMA_DIRECTION_TO_DEVICE);
}
static uint64_t dma_buf_rw(uint8_t *ptr, int32_t len, QEMUSGList *sg,
DMADirection dir)
{
uint64_t resid;
int sg_cur_index;
resid = sg->size;
sg_cur_index = 0;
len = MIN(len, resid);
while (len > 0) {
ScatterGatherEntry entry = sg->sg[sg_cur_index++];
int32_t xfer = MIN(len, entry.len);
dma_memory_rw(sg->as, entry.base, ptr, xfer, dir);
ptr += xfer;
len -= xfer;
resid -= xfer;
}
return resid;
}
uint64_t dma_buf_read(uint8_t *ptr, int32_t len, QEMUSGList *sg)
{
return dma_buf_rw(ptr, len, sg, DMA_DIRECTION_FROM_DEVICE);
}
uint64_t dma_buf_write(uint8_t *ptr, int32_t len, QEMUSGList *sg)
{
return dma_buf_rw(ptr, len, sg, DMA_DIRECTION_TO_DEVICE);
}
void dma_acct_start(BlockBackend *blk, BlockAcctCookie *cookie,
QEMUSGList *sg, enum BlockAcctType type)
{
block_acct_start(blk_get_stats(blk), cookie, sg->size, type);
}
|