1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
|
/*
* ARM Generic Interrupt Controller v3
*
* Copyright (c) 2016 Linaro Limited
* Written by Peter Maydell
*
* This code is licensed under the GPL, version 2 or (at your option)
* any later version.
*/
/* This file contains the code for the system register interface
* portions of the GICv3.
*/
#include "qemu/osdep.h"
#include "trace.h"
#include "gicv3_internal.h"
#include "cpu.h"
static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
{
/* Given the CPU, find the right GICv3CPUState struct.
* Since we registered the CPU interface with the EL change hook as
* the opaque pointer, we can just directly get from the CPU to it.
*/
return arm_get_el_change_hook_opaque(arm_env_get_cpu(env));
}
static bool gicv3_use_ns_bank(CPUARMState *env)
{
/* Return true if we should use the NonSecure bank for a banked GIC
* CPU interface register. Note that this differs from the
* access_secure_reg() function because GICv3 banked registers are
* banked even for AArch64, unlike the other CPU system registers.
*/
return !arm_is_secure_below_el3(env);
}
static int icc_highest_active_prio(GICv3CPUState *cs)
{
/* Calculate the current running priority based on the set bits
* in the Active Priority Registers.
*/
int i;
for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
uint32_t apr = cs->icc_apr[GICV3_G0][i] |
cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
if (!apr) {
continue;
}
return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
}
/* No current active interrupts: return idle priority */
return 0xff;
}
static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
{
/* Return a mask word which clears the subpriority bits from
* a priority value for an interrupt in the specified group.
* This depends on the BPR value:
* a BPR of 0 means the group priority bits are [7:1];
* a BPR of 1 means they are [7:2], and so on down to
* a BPR of 7 meaning no group priority bits at all.
* Which BPR to use depends on the group of the interrupt and
* the current ICC_CTLR.CBPR settings.
*/
if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
(group == GICV3_G1NS &&
cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
group = GICV3_G0;
}
return ~0U << ((cs->icc_bpr[group] & 7) + 1);
}
static bool icc_no_enabled_hppi(GICv3CPUState *cs)
{
/* Return true if there is no pending interrupt, or the
* highest priority pending interrupt is in a group which has been
* disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
*/
return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
}
static bool icc_hppi_can_preempt(GICv3CPUState *cs)
{
/* Return true if we have a pending interrupt of sufficient
* priority to preempt.
*/
int rprio;
uint32_t mask;
if (icc_no_enabled_hppi(cs)) {
return false;
}
if (cs->hppi.prio >= cs->icc_pmr_el1) {
/* Priority mask masks this interrupt */
return false;
}
rprio = icc_highest_active_prio(cs);
if (rprio == 0xff) {
/* No currently running interrupt so we can preempt */
return true;
}
mask = icc_gprio_mask(cs, cs->hppi.grp);
/* We only preempt a running interrupt if the pending interrupt's
* group priority is sufficient (the subpriorities are not considered).
*/
if ((cs->hppi.prio & mask) < (rprio & mask)) {
return true;
}
return false;
}
void gicv3_cpuif_update(GICv3CPUState *cs)
{
/* Tell the CPU about its highest priority pending interrupt */
int irqlevel = 0;
int fiqlevel = 0;
ARMCPU *cpu = ARM_CPU(cs->cpu);
CPUARMState *env = &cpu->env;
trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
cs->hppi.grp, cs->hppi.prio);
if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
/* If a Security-enabled GIC sends a G1S interrupt to a
* Security-disabled CPU, we must treat it as if it were G0.
*/
cs->hppi.grp = GICV3_G0;
}
if (icc_hppi_can_preempt(cs)) {
/* We have an interrupt: should we signal it as IRQ or FIQ?
* This is described in the GICv3 spec section 4.6.2.
*/
bool isfiq;
switch (cs->hppi.grp) {
case GICV3_G0:
isfiq = true;
break;
case GICV3_G1:
isfiq = (!arm_is_secure(env) ||
(arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
break;
case GICV3_G1NS:
isfiq = arm_is_secure(env);
break;
default:
g_assert_not_reached();
}
if (isfiq) {
fiqlevel = 1;
} else {
irqlevel = 1;
}
}
trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
qemu_set_irq(cs->parent_fiq, fiqlevel);
qemu_set_irq(cs->parent_irq, irqlevel);
}
static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint32_t value = cs->icc_pmr_el1;
if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
(env->cp15.scr_el3 & SCR_FIQ)) {
/* NS access and Group 0 is inaccessible to NS: return the
* NS view of the current priority
*/
if (value & 0x80) {
/* Secure priorities not visible to NS */
value = 0;
} else if (value != 0xff) {
value = (value << 1) & 0xff;
}
}
trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
return value;
}
static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
value &= 0xff;
if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
(env->cp15.scr_el3 & SCR_FIQ)) {
/* NS access and Group 0 is inaccessible to NS: return the
* NS view of the current priority
*/
if (!(cs->icc_pmr_el1 & 0x80)) {
/* Current PMR in the secure range, don't allow NS to change it */
return;
}
value = (value >> 1) & 0x80;
}
cs->icc_pmr_el1 = value;
gicv3_cpuif_update(cs);
}
static void icc_activate_irq(GICv3CPUState *cs, int irq)
{
/* Move the interrupt from the Pending state to Active, and update
* the Active Priority Registers
*/
uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
int prio = cs->hppi.prio & mask;
int aprbit = prio >> 1;
int regno = aprbit / 32;
int regbit = aprbit % 32;
cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
if (irq < GIC_INTERNAL) {
cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
gicv3_redist_update(cs);
} else {
gicv3_gicd_active_set(cs->gic, irq);
gicv3_gicd_pending_clear(cs->gic, irq);
gicv3_update(cs->gic, irq, 1);
}
}
static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
{
/* Return the highest priority pending interrupt register value
* for group 0.
*/
bool irq_is_secure;
if (cs->hppi.prio == 0xff) {
return INTID_SPURIOUS;
}
/* Check whether we can return the interrupt or if we should return
* a special identifier, as per the CheckGroup0ForSpecialIdentifiers
* pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
* is always zero.)
*/
irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
(cs->hppi.grp != GICV3_G1NS));
if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
return INTID_SPURIOUS;
}
if (irq_is_secure && !arm_is_secure(env)) {
/* Secure interrupts not visible to Nonsecure */
return INTID_SPURIOUS;
}
if (cs->hppi.grp != GICV3_G0) {
/* Indicate to EL3 that there's a Group 1 interrupt for the other
* state pending.
*/
return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
}
return cs->hppi.irq;
}
static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
{
/* Return the highest priority pending interrupt register value
* for group 1.
*/
bool irq_is_secure;
if (cs->hppi.prio == 0xff) {
return INTID_SPURIOUS;
}
/* Check whether we can return the interrupt or if we should return
* a special identifier, as per the CheckGroup1ForSpecialIdentifiers
* pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
* is always zero.)
*/
irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
(cs->hppi.grp != GICV3_G1NS));
if (cs->hppi.grp == GICV3_G0) {
/* Group 0 interrupts not visible via HPPIR1 */
return INTID_SPURIOUS;
}
if (irq_is_secure) {
if (!arm_is_secure(env)) {
/* Secure interrupts not visible in Non-secure */
return INTID_SPURIOUS;
}
} else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
/* Group 1 non-secure interrupts not visible in Secure EL1 */
return INTID_SPURIOUS;
}
return cs->hppi.irq;
}
static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t intid;
if (!icc_hppi_can_preempt(cs)) {
intid = INTID_SPURIOUS;
} else {
intid = icc_hppir0_value(cs, env);
}
if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
icc_activate_irq(cs, intid);
}
trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
return intid;
}
static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t intid;
if (!icc_hppi_can_preempt(cs)) {
intid = INTID_SPURIOUS;
} else {
intid = icc_hppir1_value(cs, env);
}
if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
icc_activate_irq(cs, intid);
}
trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
return intid;
}
static void icc_drop_prio(GICv3CPUState *cs, int grp)
{
/* Drop the priority of the currently active interrupt in
* the specified group.
*
* Note that we can guarantee (because of the requirement to nest
* ICC_IAR reads [which activate an interrupt and raise priority]
* with ICC_EOIR writes [which drop the priority for the interrupt])
* that the interrupt we're being called for is the highest priority
* active interrupt, meaning that it has the lowest set bit in the
* APR registers.
*
* If the guest does not honour the ordering constraints then the
* behaviour of the GIC is UNPREDICTABLE, which for us means that
* the values of the APR registers might become incorrect and the
* running priority will be wrong, so interrupts that should preempt
* might not do so, and interrupts that should not preempt might do so.
*/
int i;
for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
uint64_t *papr = &cs->icc_apr[grp][i];
if (!*papr) {
continue;
}
/* Clear the lowest set bit */
*papr &= *papr - 1;
break;
}
/* running priority change means we need an update for this cpu i/f */
gicv3_cpuif_update(cs);
}
static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
{
/* Return true if we should split priority drop and interrupt
* deactivation, ie whether the relevant EOIMode bit is set.
*/
if (arm_is_el3_or_mon(env)) {
return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
}
if (arm_is_secure_below_el3(env)) {
return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
} else {
return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
}
}
static int icc_highest_active_group(GICv3CPUState *cs)
{
/* Return the group with the highest priority active interrupt.
* We can do this by just comparing the APRs to see which one
* has the lowest set bit.
* (If more than one group is active at the same priority then
* we're in UNPREDICTABLE territory.)
*/
int i;
for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
return GICV3_G1NS;
}
if (g1ctz < g0ctz) {
return GICV3_G1;
}
if (g0ctz < 32) {
return GICV3_G0;
}
}
/* No set active bits? UNPREDICTABLE; return -1 so the caller
* ignores the spurious EOI attempt.
*/
return -1;
}
static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
{
if (irq < GIC_INTERNAL) {
cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
gicv3_redist_update(cs);
} else {
gicv3_gicd_active_clear(cs->gic, irq);
gicv3_update(cs->gic, irq, 1);
}
}
static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* End of Interrupt */
GICv3CPUState *cs = icc_cs_from_env(env);
int irq = value & 0xffffff;
int grp;
trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
gicv3_redist_affid(cs), value);
if (ri->crm == 8) {
/* EOIR0 */
grp = GICV3_G0;
} else {
/* EOIR1 */
if (arm_is_secure(env)) {
grp = GICV3_G1;
} else {
grp = GICV3_G1NS;
}
}
if (irq >= cs->gic->num_irq) {
/* This handles two cases:
* 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
* to the GICC_EOIR, the GIC ignores that write.
* 2. If software writes the number of a non-existent interrupt
* this must be a subcase of "value written does not match the last
* valid interrupt value read from the Interrupt Acknowledge
* register" and so this is UNPREDICTABLE. We choose to ignore it.
*/
return;
}
if (icc_highest_active_group(cs) != grp) {
return;
}
icc_drop_prio(cs, grp);
if (!icc_eoi_split(env, cs)) {
/* Priority drop and deactivate not split: deactivate irq now */
icc_deactivate_irq(cs, irq);
}
}
static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t value = icc_hppir0_value(cs, env);
trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
return value;
}
static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t value = icc_hppir1_value(cs, env);
trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
return value;
}
static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
bool satinc = false;
uint64_t bpr;
if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
grp = GICV3_G1NS;
}
if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
(cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
/* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
* modify BPR0
*/
grp = GICV3_G0;
}
if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
(cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
/* reads return bpr0 + 1 sat to 7, writes ignored */
grp = GICV3_G0;
satinc = true;
}
bpr = cs->icc_bpr[grp];
if (satinc) {
bpr++;
bpr = MIN(bpr, 7);
}
trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
return bpr;
}
static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
gicv3_redist_affid(cs), value);
if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
grp = GICV3_G1NS;
}
if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
(cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
/* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
* modify BPR0
*/
grp = GICV3_G0;
}
if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
(cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
/* reads return bpr0 + 1 sat to 7, writes ignored */
return;
}
cs->icc_bpr[grp] = value & 7;
gicv3_cpuif_update(cs);
}
static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t value;
int regno = ri->opc2 & 3;
int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
grp = GICV3_G1NS;
}
value = cs->icc_apr[grp][regno];
trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
return value;
}
static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int regno = ri->opc2 & 3;
int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
grp = GICV3_G1NS;
}
/* It's not possible to claim that a Non-secure interrupt is active
* at a priority outside the Non-secure range (128..255), since this
* would otherwise allow malicious NS code to block delivery of S interrupts
* by writing a bad value to these registers.
*/
if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
return;
}
cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
gicv3_cpuif_update(cs);
}
static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Deactivate interrupt */
GICv3CPUState *cs = icc_cs_from_env(env);
int irq = value & 0xffffff;
bool irq_is_secure, single_sec_state, irq_is_grp0;
bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
if (irq >= cs->gic->num_irq) {
/* Also catches special interrupt numbers and LPIs */
return;
}
if (!icc_eoi_split(env, cs)) {
return;
}
int grp = gicv3_irq_group(cs->gic, cs, irq);
single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
irq_is_grp0 = grp == GICV3_G0;
/* Check whether we're allowed to deactivate this interrupt based
* on its group and the current CPU state.
* These checks are laid out to correspond to the spec's pseudocode.
*/
route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
/* No need to include !IsSecure in route_*_to_el2 as it's only
* tested in cases where we know !IsSecure is true.
*/
route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
switch (arm_current_el(env)) {
case 3:
break;
case 2:
if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
break;
}
if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
break;
}
return;
case 1:
if (!arm_is_secure_below_el3(env)) {
if (single_sec_state && irq_is_grp0 &&
!route_fiq_to_el3 && !route_fiq_to_el2) {
break;
}
if (!irq_is_secure && !irq_is_grp0 &&
!route_irq_to_el3 && !route_irq_to_el2) {
break;
}
} else {
if (irq_is_grp0 && !route_fiq_to_el3) {
break;
}
if (!irq_is_grp0 &&
(!irq_is_secure || !single_sec_state) &&
!route_irq_to_el3) {
break;
}
}
return;
default:
g_assert_not_reached();
}
icc_deactivate_irq(cs, irq);
}
static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int prio = icc_highest_active_prio(cs);
if (arm_feature(env, ARM_FEATURE_EL3) &&
!arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
/* NS GIC access and Group 0 is inaccessible to NS */
if (prio & 0x80) {
/* NS mustn't see priorities in the Secure half of the range */
prio = 0;
} else if (prio != 0xff) {
/* Non-idle priority: show the Non-secure view of it */
prio = (prio << 1) & 0xff;
}
}
trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
return prio;
}
static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
uint64_t value, int grp, bool ns)
{
GICv3State *s = cs->gic;
/* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
uint64_t aff = extract64(value, 48, 8) << 16 |
extract64(value, 32, 8) << 8 |
extract64(value, 16, 8);
uint32_t targetlist = extract64(value, 0, 16);
uint32_t irq = extract64(value, 24, 4);
bool irm = extract64(value, 40, 1);
int i;
if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
/* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
* interrupts as Group 0 interrupts and must send Secure Group 0
* interrupts to the target CPUs.
*/
grp = GICV3_G0;
}
trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
aff, targetlist);
for (i = 0; i < s->num_cpu; i++) {
GICv3CPUState *ocs = &s->cpu[i];
if (irm) {
/* IRM == 1 : route to all CPUs except self */
if (cs == ocs) {
continue;
}
} else {
/* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
* where the corresponding bit is set in targetlist
*/
int aff0;
if (ocs->gicr_typer >> 40 != aff) {
continue;
}
aff0 = extract64(ocs->gicr_typer, 32, 8);
if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
continue;
}
}
/* The redistributor will check against its own GICR_NSACR as needed */
gicv3_redist_send_sgi(ocs, grp, irq, ns);
}
}
static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Generate Secure Group 0 SGI. */
GICv3CPUState *cs = icc_cs_from_env(env);
bool ns = !arm_is_secure(env);
icc_generate_sgi(env, cs, value, GICV3_G0, ns);
}
static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Generate Group 1 SGI for the current Security state */
GICv3CPUState *cs = icc_cs_from_env(env);
int grp;
bool ns = !arm_is_secure(env);
grp = ns ? GICV3_G1NS : GICV3_G1;
icc_generate_sgi(env, cs, value, grp, ns);
}
static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Generate Group 1 SGI for the Security state that is not
* the current state
*/
GICv3CPUState *cs = icc_cs_from_env(env);
int grp;
bool ns = !arm_is_secure(env);
grp = ns ? GICV3_G1 : GICV3_G1NS;
icc_generate_sgi(env, cs, value, grp, ns);
}
static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
uint64_t value;
if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
grp = GICV3_G1NS;
}
value = cs->icc_igrpen[grp];
trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
gicv3_redist_affid(cs), value);
return value;
}
static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
gicv3_redist_affid(cs), value);
if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
grp = GICV3_G1NS;
}
cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
gicv3_cpuif_update(cs);
}
static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t value;
/* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
return value;
}
static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
/* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
gicv3_cpuif_update(cs);
}
static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
uint64_t value;
value = cs->icc_ctlr_el1[bank];
trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
return value;
}
static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
uint64_t mask;
trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
/* Only CBPR and EOIMODE can be RW;
* for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
* the asseciated priority-based routing of them);
* if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
*/
if (arm_feature(env, ARM_FEATURE_EL3) &&
((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
mask = ICC_CTLR_EL1_EOIMODE;
} else {
mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
}
cs->icc_ctlr_el1[bank] &= ~mask;
cs->icc_ctlr_el1[bank] |= (value & mask);
gicv3_cpuif_update(cs);
}
static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t value;
value = cs->icc_ctlr_el3;
if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
}
if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
value |= ICC_CTLR_EL3_CBPR_EL1NS;
}
if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
value |= ICC_CTLR_EL3_EOIMODE_EL1S;
}
if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
value |= ICC_CTLR_EL3_CBPR_EL1S;
}
trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
return value;
}
static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t mask;
trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
/* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
}
if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
}
cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
}
if (value & ICC_CTLR_EL3_CBPR_EL1S) {
cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
}
/* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
mask = ICC_CTLR_EL3_EOIMODE_EL3;
cs->icc_ctlr_el3 &= ~mask;
cs->icc_ctlr_el3 |= (value & mask);
gicv3_cpuif_update(cs);
}
static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
const ARMCPRegInfo *ri, bool isread)
{
CPAccessResult r = CP_ACCESS_OK;
if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
switch (arm_current_el(env)) {
case 1:
if (arm_is_secure_below_el3(env) ||
((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) {
r = CP_ACCESS_TRAP_EL3;
}
break;
case 2:
r = CP_ACCESS_TRAP_EL3;
break;
case 3:
if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
r = CP_ACCESS_TRAP_EL3;
}
break;
default:
g_assert_not_reached();
}
}
if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
r = CP_ACCESS_TRAP;
}
return r;
}
static CPAccessResult gicv3_fiq_access(CPUARMState *env,
const ARMCPRegInfo *ri, bool isread)
{
CPAccessResult r = CP_ACCESS_OK;
if (env->cp15.scr_el3 & SCR_FIQ) {
switch (arm_current_el(env)) {
case 1:
if (arm_is_secure_below_el3(env) ||
((env->cp15.hcr_el2 & HCR_FMO) == 0)) {
r = CP_ACCESS_TRAP_EL3;
}
break;
case 2:
r = CP_ACCESS_TRAP_EL3;
break;
case 3:
if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
r = CP_ACCESS_TRAP_EL3;
}
break;
default:
g_assert_not_reached();
}
}
if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
r = CP_ACCESS_TRAP;
}
return r;
}
static CPAccessResult gicv3_irq_access(CPUARMState *env,
const ARMCPRegInfo *ri, bool isread)
{
CPAccessResult r = CP_ACCESS_OK;
if (env->cp15.scr_el3 & SCR_IRQ) {
switch (arm_current_el(env)) {
case 1:
if (arm_is_secure_below_el3(env) ||
((env->cp15.hcr_el2 & HCR_IMO) == 0)) {
r = CP_ACCESS_TRAP_EL3;
}
break;
case 2:
r = CP_ACCESS_TRAP_EL3;
break;
case 3:
if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
r = CP_ACCESS_TRAP_EL3;
}
break;
default:
g_assert_not_reached();
}
}
if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
r = CP_ACCESS_TRAP;
}
return r;
}
static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
(1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
(7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
(1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
(7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
cs->icc_pmr_el1 = 0;
cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
if (arm_feature(env, ARM_FEATURE_EL3)) {
cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
} else {
cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
}
memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
(1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
(7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
}
static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
{ .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_irqfiq_access,
.readfn = icc_pmr_read,
.writefn = icc_pmr_write,
/* We hang the whole cpu interface reset routine off here
* rather than parcelling it out into one little function
* per register
*/
.resetfn = icc_reset,
},
{ .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_R, .accessfn = gicv3_fiq_access,
.readfn = icc_iar0_read,
},
{ .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_W, .accessfn = gicv3_fiq_access,
.writefn = icc_eoir_write,
},
{ .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_R, .accessfn = gicv3_fiq_access,
.readfn = icc_hppir0_read,
},
{ .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_fiq_access,
.fieldoffset = offsetof(GICv3CPUState, icc_bpr[GICV3_G0]),
.writefn = icc_bpr_write,
},
{ .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_fiq_access,
.fieldoffset = offsetof(GICv3CPUState, icc_apr[GICV3_G0][0]),
.writefn = icc_ap_write,
},
{ .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_fiq_access,
.fieldoffset = offsetof(GICv3CPUState, icc_apr[GICV3_G0][1]),
.writefn = icc_ap_write,
},
{ .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_fiq_access,
.fieldoffset = offsetof(GICv3CPUState, icc_apr[GICV3_G0][2]),
.writefn = icc_ap_write,
},
{ .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_fiq_access,
.fieldoffset = offsetof(GICv3CPUState, icc_apr[GICV3_G0][3]),
.writefn = icc_ap_write,
},
/* All the ICC_AP1R*_EL1 registers are banked */
{ .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_irq_access,
.readfn = icc_ap_read,
.writefn = icc_ap_write,
},
{ .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_irq_access,
.readfn = icc_ap_read,
.writefn = icc_ap_write,
},
{ .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_irq_access,
.readfn = icc_ap_read,
.writefn = icc_ap_write,
},
{ .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_irq_access,
.readfn = icc_ap_read,
.writefn = icc_ap_write,
},
{ .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_W, .accessfn = gicv3_irqfiq_access,
.writefn = icc_dir_write,
},
{ .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_R, .accessfn = gicv3_irqfiq_access,
.readfn = icc_rpr_read,
},
{ .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_W, .accessfn = gicv3_irqfiq_access,
.writefn = icc_sgi1r_write,
},
{ .name = "ICC_SGI1R",
.cp = 15, .opc1 = 0, .crm = 12,
.type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_W, .accessfn = gicv3_irqfiq_access,
.writefn = icc_sgi1r_write,
},
{ .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_W, .accessfn = gicv3_irqfiq_access,
.writefn = icc_asgi1r_write,
},
{ .name = "ICC_ASGI1R",
.cp = 15, .opc1 = 1, .crm = 12,
.type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_W, .accessfn = gicv3_irqfiq_access,
.writefn = icc_asgi1r_write,
},
{ .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_W, .accessfn = gicv3_irqfiq_access,
.writefn = icc_sgi0r_write,
},
{ .name = "ICC_SGI0R",
.cp = 15, .opc1 = 2, .crm = 12,
.type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_W, .accessfn = gicv3_irqfiq_access,
.writefn = icc_sgi0r_write,
},
{ .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_R, .accessfn = gicv3_irq_access,
.readfn = icc_iar1_read,
},
{ .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_W, .accessfn = gicv3_irq_access,
.writefn = icc_eoir_write,
},
{ .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_R, .accessfn = gicv3_irq_access,
.readfn = icc_hppir1_read,
},
/* This register is banked */
{ .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_irq_access,
.readfn = icc_bpr_read,
.writefn = icc_bpr_write,
},
/* This register is banked */
{ .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_irqfiq_access,
.readfn = icc_ctlr_el1_read,
.writefn = icc_ctlr_el1_write,
},
{ .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
.type = ARM_CP_NO_RAW | ARM_CP_CONST,
.access = PL1_RW,
/* We don't support IRQ/FIQ bypass and system registers are
* always enabled, so all our bits are RAZ/WI or RAO/WI.
* This register is banked but since it's constant we don't
* need to do anything special.
*/
.resetvalue = 0x7,
},
{ .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_fiq_access,
.fieldoffset = offsetof(GICv3CPUState, icc_igrpen[GICV3_G0]),
.writefn = icc_igrpen_write,
},
/* This register is banked */
{ .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_irq_access,
.readfn = icc_igrpen_read,
.writefn = icc_igrpen_write,
},
{ .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
.type = ARM_CP_NO_RAW | ARM_CP_CONST,
.access = PL2_RW,
/* We don't support IRQ/FIQ bypass and system registers are
* always enabled, so all our bits are RAZ/WI or RAO/WI.
*/
.resetvalue = 0xf,
},
{ .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL3_RW,
.fieldoffset = offsetof(GICv3CPUState, icc_ctlr_el3),
.readfn = icc_ctlr_el3_read,
.writefn = icc_ctlr_el3_write,
},
{ .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
.type = ARM_CP_NO_RAW | ARM_CP_CONST,
.access = PL3_RW,
/* We don't support IRQ/FIQ bypass and system registers are
* always enabled, so all our bits are RAZ/WI or RAO/WI.
*/
.resetvalue = 0xf,
},
{ .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL3_RW,
.readfn = icc_igrpen1_el3_read,
.writefn = icc_igrpen1_el3_write,
},
REGINFO_SENTINEL
};
static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
{
GICv3CPUState *cs = opaque;
gicv3_cpuif_update(cs);
}
void gicv3_init_cpuif(GICv3State *s)
{
/* Called from the GICv3 realize function; register our system
* registers with the CPU
*/
int i;
for (i = 0; i < s->num_cpu; i++) {
ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
GICv3CPUState *cs = &s->cpu[i];
/* Note that we can't just use the GICv3CPUState as an opaque pointer
* in define_arm_cp_regs_with_opaque(), because when we're called back
* it might be with code translated by CPU 0 but run by CPU 1, in
* which case we'd get the wrong value.
* So instead we define the regs with no ri->opaque info, and
* get back to the GICv3CPUState from the ARMCPU by reading back
* the opaque pointer from the el_change_hook, which we're going
* to need to register anyway.
*/
define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
}
}
|