1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
|
/*
* QTest testcase for the Nuvoton NPCM7xx Timer
*
* Copyright 2020 Google LLC
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "qemu/osdep.h"
#include "qemu/timer.h"
#include "libqtest-single.h"
#define TIM_REF_HZ (25000000)
/* Bits in TCSRx */
#define CEN BIT(30)
#define IE BIT(29)
#define MODE_ONESHOT (0 << 27)
#define MODE_PERIODIC (1 << 27)
#define CRST BIT(26)
#define CACT BIT(25)
#define PRESCALE(x) (x)
/* Registers shared between all timers in a module. */
#define TISR 0x18
#define WTCR 0x1c
# define WTCLK(x) ((x) << 10)
/* Power-on default; used to re-initialize timers before each test. */
#define TCSR_DEFAULT PRESCALE(5)
/* Register offsets for a timer within a timer block. */
typedef struct Timer {
unsigned int tcsr_offset;
unsigned int ticr_offset;
unsigned int tdr_offset;
} Timer;
/* A timer block containing 5 timers. */
typedef struct TimerBlock {
int irq_base;
uint64_t base_addr;
} TimerBlock;
/* Testdata for testing a particular timer within a timer block. */
typedef struct TestData {
const TimerBlock *tim;
const Timer *timer;
} TestData;
const TimerBlock timer_block[] = {
{
.irq_base = 32,
.base_addr = 0xf0008000,
},
{
.irq_base = 37,
.base_addr = 0xf0009000,
},
{
.irq_base = 42,
.base_addr = 0xf000a000,
},
};
const Timer timer[] = {
{
.tcsr_offset = 0x00,
.ticr_offset = 0x08,
.tdr_offset = 0x10,
}, {
.tcsr_offset = 0x04,
.ticr_offset = 0x0c,
.tdr_offset = 0x14,
}, {
.tcsr_offset = 0x20,
.ticr_offset = 0x28,
.tdr_offset = 0x30,
}, {
.tcsr_offset = 0x24,
.ticr_offset = 0x2c,
.tdr_offset = 0x34,
}, {
.tcsr_offset = 0x40,
.ticr_offset = 0x48,
.tdr_offset = 0x50,
},
};
/* Returns the index of the timer block. */
static int tim_index(const TimerBlock *tim)
{
ptrdiff_t diff = tim - timer_block;
g_assert(diff >= 0 && diff < ARRAY_SIZE(timer_block));
return diff;
}
/* Returns the index of a timer within a timer block. */
static int timer_index(const Timer *t)
{
ptrdiff_t diff = t - timer;
g_assert(diff >= 0 && diff < ARRAY_SIZE(timer));
return diff;
}
/* Returns the irq line for a given timer. */
static int tim_timer_irq(const TestData *td)
{
return td->tim->irq_base + timer_index(td->timer);
}
/* Register read/write accessors. */
static void tim_write(const TestData *td,
unsigned int offset, uint32_t value)
{
writel(td->tim->base_addr + offset, value);
}
static uint32_t tim_read(const TestData *td, unsigned int offset)
{
return readl(td->tim->base_addr + offset);
}
static void tim_write_tcsr(const TestData *td, uint32_t value)
{
tim_write(td, td->timer->tcsr_offset, value);
}
static uint32_t tim_read_tcsr(const TestData *td)
{
return tim_read(td, td->timer->tcsr_offset);
}
static void tim_write_ticr(const TestData *td, uint32_t value)
{
tim_write(td, td->timer->ticr_offset, value);
}
static uint32_t tim_read_ticr(const TestData *td)
{
return tim_read(td, td->timer->ticr_offset);
}
static uint32_t tim_read_tdr(const TestData *td)
{
return tim_read(td, td->timer->tdr_offset);
}
/* Returns the number of nanoseconds to count the given number of cycles. */
static int64_t tim_calculate_step(uint32_t count, uint32_t prescale)
{
return (1000000000LL / TIM_REF_HZ) * count * (prescale + 1);
}
/* Returns a bitmask corresponding to the timer under test. */
static uint32_t tim_timer_bit(const TestData *td)
{
return BIT(timer_index(td->timer));
}
/* Resets all timers to power-on defaults. */
static void tim_reset(const TestData *td)
{
int i, j;
/* Reset all the timers, in case a previous test left a timer running. */
for (i = 0; i < ARRAY_SIZE(timer_block); i++) {
for (j = 0; j < ARRAY_SIZE(timer); j++) {
writel(timer_block[i].base_addr + timer[j].tcsr_offset,
CRST | TCSR_DEFAULT);
}
writel(timer_block[i].base_addr + TISR, -1);
}
}
/* Verifies the reset state of a timer. */
static void test_reset(gconstpointer test_data)
{
const TestData *td = test_data;
tim_reset(td);
g_assert_cmphex(tim_read_tcsr(td), ==, TCSR_DEFAULT);
g_assert_cmphex(tim_read_ticr(td), ==, 0);
g_assert_cmphex(tim_read_tdr(td), ==, 0);
g_assert_cmphex(tim_read(td, TISR), ==, 0);
g_assert_cmphex(tim_read(td, WTCR), ==, WTCLK(1));
}
/* Verifies that CRST wins if both CEN and CRST are set. */
static void test_reset_overrides_enable(gconstpointer test_data)
{
const TestData *td = test_data;
tim_reset(td);
/* CRST should force CEN to 0 */
tim_write_tcsr(td, CEN | CRST | TCSR_DEFAULT);
g_assert_cmphex(tim_read_tcsr(td), ==, TCSR_DEFAULT);
g_assert_cmphex(tim_read_tdr(td), ==, 0);
g_assert_cmphex(tim_read(td, TISR), ==, 0);
}
/* Verifies the behavior when CEN is set and then cleared. */
static void test_oneshot_enable_then_disable(gconstpointer test_data)
{
const TestData *td = test_data;
tim_reset(td);
/* Enable the timer with zero initial count, then disable it again. */
tim_write_tcsr(td, CEN | TCSR_DEFAULT);
tim_write_tcsr(td, TCSR_DEFAULT);
g_assert_cmphex(tim_read_tcsr(td), ==, TCSR_DEFAULT);
g_assert_cmphex(tim_read_tdr(td), ==, 0);
/* Timer interrupt flag should be set, but interrupts are not enabled. */
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
}
/* Verifies that a one-shot timer fires when expected with prescaler 5. */
static void test_oneshot_ps5(gconstpointer test_data)
{
const TestData *td = test_data;
unsigned int count = 256;
unsigned int ps = 5;
tim_reset(td);
tim_write_ticr(td, count);
tim_write_tcsr(td, CEN | PRESCALE(ps));
g_assert_cmphex(tim_read_tcsr(td), ==, CEN | CACT | PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count);
clock_step(tim_calculate_step(count, ps) - 1);
g_assert_cmphex(tim_read_tcsr(td), ==, CEN | CACT | PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), <, count);
g_assert_cmphex(tim_read(td, TISR), ==, 0);
clock_step(1);
g_assert_cmphex(tim_read_tcsr(td), ==, PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count);
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
/* Clear the interrupt flag. */
tim_write(td, TISR, tim_timer_bit(td));
g_assert_cmphex(tim_read(td, TISR), ==, 0);
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
/* Verify that this isn't a periodic timer. */
clock_step(2 * tim_calculate_step(count, ps));
g_assert_cmphex(tim_read(td, TISR), ==, 0);
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
}
/* Verifies that a one-shot timer fires when expected with prescaler 0. */
static void test_oneshot_ps0(gconstpointer test_data)
{
const TestData *td = test_data;
unsigned int count = 1;
unsigned int ps = 0;
tim_reset(td);
tim_write_ticr(td, count);
tim_write_tcsr(td, CEN | PRESCALE(ps));
g_assert_cmphex(tim_read_tcsr(td), ==, CEN | CACT | PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count);
clock_step(tim_calculate_step(count, ps) - 1);
g_assert_cmphex(tim_read_tcsr(td), ==, CEN | CACT | PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), <, count);
g_assert_cmphex(tim_read(td, TISR), ==, 0);
clock_step(1);
g_assert_cmphex(tim_read_tcsr(td), ==, PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count);
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
}
/* Verifies that a one-shot timer fires when expected with highest prescaler. */
static void test_oneshot_ps255(gconstpointer test_data)
{
const TestData *td = test_data;
unsigned int count = (1U << 24) - 1;
unsigned int ps = 255;
tim_reset(td);
tim_write_ticr(td, count);
tim_write_tcsr(td, CEN | PRESCALE(ps));
g_assert_cmphex(tim_read_tcsr(td), ==, CEN | CACT | PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count);
clock_step(tim_calculate_step(count, ps) - 1);
g_assert_cmphex(tim_read_tcsr(td), ==, CEN | CACT | PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), <, count);
g_assert_cmphex(tim_read(td, TISR), ==, 0);
clock_step(1);
g_assert_cmphex(tim_read_tcsr(td), ==, PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count);
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
}
/* Verifies that a oneshot timer fires an interrupt when expected. */
static void test_oneshot_interrupt(gconstpointer test_data)
{
const TestData *td = test_data;
unsigned int count = 256;
unsigned int ps = 7;
tim_reset(td);
tim_write_ticr(td, count);
tim_write_tcsr(td, IE | CEN | MODE_ONESHOT | PRESCALE(ps));
clock_step_next();
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
g_assert_true(qtest_get_irq(global_qtest, tim_timer_irq(td)));
}
/*
* Verifies that the timer can be paused and later resumed, and it still fires
* at the right moment.
*/
static void test_pause_resume(gconstpointer test_data)
{
const TestData *td = test_data;
unsigned int count = 256;
unsigned int ps = 1;
tim_reset(td);
tim_write_ticr(td, count);
tim_write_tcsr(td, IE | CEN | MODE_ONESHOT | PRESCALE(ps));
/* Pause the timer halfway to expiration. */
clock_step(tim_calculate_step(count / 2, ps));
tim_write_tcsr(td, IE | MODE_ONESHOT | PRESCALE(ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count / 2);
/* Counter should not advance during the following step. */
clock_step(2 * tim_calculate_step(count, ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count / 2);
g_assert_cmphex(tim_read(td, TISR), ==, 0);
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
/* Resume the timer and run _almost_ to expiration. */
tim_write_tcsr(td, IE | CEN | MODE_ONESHOT | PRESCALE(ps));
clock_step(tim_calculate_step(count / 2, ps) - 1);
g_assert_cmpuint(tim_read_tdr(td), <, count);
g_assert_cmphex(tim_read(td, TISR), ==, 0);
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
/* Now, run the rest of the way and verify that the interrupt fires. */
clock_step(1);
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
g_assert_true(qtest_get_irq(global_qtest, tim_timer_irq(td)));
}
/* Verifies that the prescaler can be changed while the timer is runnin. */
static void test_prescaler_change(gconstpointer test_data)
{
const TestData *td = test_data;
unsigned int count = 256;
unsigned int ps = 5;
tim_reset(td);
tim_write_ticr(td, count);
tim_write_tcsr(td, CEN | MODE_ONESHOT | PRESCALE(ps));
/* Run a quarter of the way, and change the prescaler. */
clock_step(tim_calculate_step(count / 4, ps));
g_assert_cmpuint(tim_read_tdr(td), ==, 3 * count / 4);
ps = 2;
tim_write_tcsr(td, CEN | MODE_ONESHOT | PRESCALE(ps));
/* The counter must not change. */
g_assert_cmpuint(tim_read_tdr(td), ==, 3 * count / 4);
/* Run another quarter of the way, and change the prescaler again. */
clock_step(tim_calculate_step(count / 4, ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count / 2);
ps = 8;
tim_write_tcsr(td, CEN | MODE_ONESHOT | PRESCALE(ps));
/* The counter must not change. */
g_assert_cmpuint(tim_read_tdr(td), ==, count / 2);
/* Run another quarter of the way, and change the prescaler again. */
clock_step(tim_calculate_step(count / 4, ps));
g_assert_cmpuint(tim_read_tdr(td), ==, count / 4);
ps = 0;
tim_write_tcsr(td, CEN | MODE_ONESHOT | PRESCALE(ps));
/* The counter must not change. */
g_assert_cmpuint(tim_read_tdr(td), ==, count / 4);
/* Run almost to expiration, and verify the timer didn't fire yet. */
clock_step(tim_calculate_step(count / 4, ps) - 1);
g_assert_cmpuint(tim_read_tdr(td), <, count);
g_assert_cmphex(tim_read(td, TISR), ==, 0);
/* Now, run the rest of the way and verify that the timer fires. */
clock_step(1);
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
}
/* Verifies that a periodic timer automatically restarts after expiration. */
static void test_periodic_no_interrupt(gconstpointer test_data)
{
const TestData *td = test_data;
unsigned int count = 2;
unsigned int ps = 3;
int i;
tim_reset(td);
tim_write_ticr(td, count);
tim_write_tcsr(td, CEN | MODE_PERIODIC | PRESCALE(ps));
for (i = 0; i < 4; i++) {
clock_step_next();
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
tim_write(td, TISR, tim_timer_bit(td));
g_assert_cmphex(tim_read(td, TISR), ==, 0);
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
}
}
/* Verifies that a periodict timer fires an interrupt every time it expires. */
static void test_periodic_interrupt(gconstpointer test_data)
{
const TestData *td = test_data;
unsigned int count = 65535;
unsigned int ps = 2;
int i;
tim_reset(td);
tim_write_ticr(td, count);
tim_write_tcsr(td, CEN | IE | MODE_PERIODIC | PRESCALE(ps));
for (i = 0; i < 4; i++) {
clock_step_next();
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
g_assert_true(qtest_get_irq(global_qtest, tim_timer_irq(td)));
tim_write(td, TISR, tim_timer_bit(td));
g_assert_cmphex(tim_read(td, TISR), ==, 0);
g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
}
}
/*
* Verifies that the timer behaves correctly when disabled right before and
* exactly when it's supposed to expire.
*/
static void test_disable_on_expiration(gconstpointer test_data)
{
const TestData *td = test_data;
unsigned int count = 8;
unsigned int ps = 255;
tim_reset(td);
tim_write_ticr(td, count);
tim_write_tcsr(td, CEN | MODE_ONESHOT | PRESCALE(ps));
clock_step(tim_calculate_step(count, ps) - 1);
tim_write_tcsr(td, MODE_ONESHOT | PRESCALE(ps));
tim_write_tcsr(td, CEN | MODE_ONESHOT | PRESCALE(ps));
clock_step(1);
tim_write_tcsr(td, MODE_ONESHOT | PRESCALE(ps));
g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
}
/*
* Constructs a name that includes the timer block, timer and testcase name,
* and adds the test to the test suite.
*/
static void tim_add_test(const char *name, const TestData *td, GTestDataFunc fn)
{
g_autofree char *full_name = g_strdup_printf(
"npcm7xx_timer/tim[%d]/timer[%d]/%s", tim_index(td->tim),
timer_index(td->timer), name);
qtest_add_data_func(full_name, td, fn);
}
/* Convenience macro for adding a test with a predictable function name. */
#define add_test(name, td) tim_add_test(#name, td, test_##name)
int main(int argc, char **argv)
{
TestData testdata[ARRAY_SIZE(timer_block) * ARRAY_SIZE(timer)];
int ret;
int i, j;
g_test_init(&argc, &argv, NULL);
g_test_set_nonfatal_assertions();
for (i = 0; i < ARRAY_SIZE(timer_block); i++) {
for (j = 0; j < ARRAY_SIZE(timer); j++) {
TestData *td = &testdata[i * ARRAY_SIZE(timer) + j];
td->tim = &timer_block[i];
td->timer = &timer[j];
add_test(reset, td);
add_test(reset_overrides_enable, td);
add_test(oneshot_enable_then_disable, td);
add_test(oneshot_ps5, td);
add_test(oneshot_ps0, td);
add_test(oneshot_ps255, td);
add_test(oneshot_interrupt, td);
add_test(pause_resume, td);
add_test(prescaler_change, td);
add_test(periodic_no_interrupt, td);
add_test(periodic_interrupt, td);
add_test(disable_on_expiration, td);
}
}
qtest_start("-machine npcm750-evb");
qtest_irq_intercept_in(global_qtest, "/machine/soc/a9mpcore/gic");
ret = g_test_run();
qtest_end();
return ret;
}
|