1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
/*
* QemuLockCnt implementation
*
* Copyright Red Hat, Inc. 2017
*
* Author:
* Paolo Bonzini <pbonzini@redhat.com>
*/
#include "qemu/osdep.h"
#include "qemu/thread.h"
#include "qemu/atomic.h"
#include "trace.h"
#ifdef CONFIG_LINUX
#include "qemu/futex.h"
/* On Linux, bits 0-1 are a futex-based lock, bits 2-31 are the counter.
* For the mutex algorithm see Ulrich Drepper's "Futexes Are Tricky" (ok,
* this is not the most relaxing citation I could make...). It is similar
* to mutex2 in the paper.
*/
#define QEMU_LOCKCNT_STATE_MASK 3
#define QEMU_LOCKCNT_STATE_FREE 0 /* free, uncontended */
#define QEMU_LOCKCNT_STATE_LOCKED 1 /* locked, uncontended */
#define QEMU_LOCKCNT_STATE_WAITING 2 /* locked, contended */
#define QEMU_LOCKCNT_COUNT_STEP 4
#define QEMU_LOCKCNT_COUNT_SHIFT 2
void qemu_lockcnt_init(QemuLockCnt *lockcnt)
{
lockcnt->count = 0;
}
void qemu_lockcnt_destroy(QemuLockCnt *lockcnt)
{
}
/* *val is the current value of lockcnt->count.
*
* If the lock is free, try a cmpxchg from *val to new_if_free; return
* true and set *val to the old value found by the cmpxchg in
* lockcnt->count.
*
* If the lock is taken, wait for it to be released and return false
* *without trying again to take the lock*. Again, set *val to the
* new value of lockcnt->count.
*
* If *waited is true on return, new_if_free's bottom two bits must not
* be QEMU_LOCKCNT_STATE_LOCKED on subsequent calls, because the caller
* does not know if there are other waiters. Furthermore, after *waited
* is set the caller has effectively acquired the lock. If it returns
* with the lock not taken, it must wake another futex waiter.
*/
static bool qemu_lockcnt_cmpxchg_or_wait(QemuLockCnt *lockcnt, int *val,
int new_if_free, bool *waited)
{
/* Fast path for when the lock is free. */
if ((*val & QEMU_LOCKCNT_STATE_MASK) == QEMU_LOCKCNT_STATE_FREE) {
int expected = *val;
trace_lockcnt_fast_path_attempt(lockcnt, expected, new_if_free);
*val = qatomic_cmpxchg(&lockcnt->count, expected, new_if_free);
if (*val == expected) {
trace_lockcnt_fast_path_success(lockcnt, expected, new_if_free);
*val = new_if_free;
return true;
}
}
/* The slow path moves from locked to waiting if necessary, then
* does a futex wait. Both steps can be repeated ad nauseam,
* only getting out of the loop if we can have another shot at the
* fast path. Once we can, get out to compute the new destination
* value for the fast path.
*/
while ((*val & QEMU_LOCKCNT_STATE_MASK) != QEMU_LOCKCNT_STATE_FREE) {
if ((*val & QEMU_LOCKCNT_STATE_MASK) == QEMU_LOCKCNT_STATE_LOCKED) {
int expected = *val;
int new = expected - QEMU_LOCKCNT_STATE_LOCKED + QEMU_LOCKCNT_STATE_WAITING;
trace_lockcnt_futex_wait_prepare(lockcnt, expected, new);
*val = qatomic_cmpxchg(&lockcnt->count, expected, new);
if (*val == expected) {
*val = new;
}
continue;
}
if ((*val & QEMU_LOCKCNT_STATE_MASK) == QEMU_LOCKCNT_STATE_WAITING) {
*waited = true;
trace_lockcnt_futex_wait(lockcnt, *val);
qemu_futex_wait(&lockcnt->count, *val);
*val = qatomic_read(&lockcnt->count);
trace_lockcnt_futex_wait_resume(lockcnt, *val);
continue;
}
abort();
}
return false;
}
static void lockcnt_wake(QemuLockCnt *lockcnt)
{
trace_lockcnt_futex_wake(lockcnt);
qemu_futex_wake(&lockcnt->count, 1);
}
void qemu_lockcnt_inc(QemuLockCnt *lockcnt)
{
int val = qatomic_read(&lockcnt->count);
bool waited = false;
for (;;) {
if (val >= QEMU_LOCKCNT_COUNT_STEP) {
int expected = val;
val = qatomic_cmpxchg(&lockcnt->count, val,
val + QEMU_LOCKCNT_COUNT_STEP);
if (val == expected) {
break;
}
} else {
/* The fast path is (0, unlocked)->(1, unlocked). */
if (qemu_lockcnt_cmpxchg_or_wait(lockcnt, &val, QEMU_LOCKCNT_COUNT_STEP,
&waited)) {
break;
}
}
}
/* If we were woken by another thread, we should also wake one because
* we are effectively releasing the lock that was given to us. This is
* the case where qemu_lockcnt_lock would leave QEMU_LOCKCNT_STATE_WAITING
* in the low bits, and qemu_lockcnt_inc_and_unlock would find it and
* wake someone.
*/
if (waited) {
lockcnt_wake(lockcnt);
}
}
void qemu_lockcnt_dec(QemuLockCnt *lockcnt)
{
qatomic_sub(&lockcnt->count, QEMU_LOCKCNT_COUNT_STEP);
}
/* Decrement a counter, and return locked if it is decremented to zero.
* If the function returns true, it is impossible for the counter to
* become nonzero until the next qemu_lockcnt_unlock.
*/
bool qemu_lockcnt_dec_and_lock(QemuLockCnt *lockcnt)
{
int val = qatomic_read(&lockcnt->count);
int locked_state = QEMU_LOCKCNT_STATE_LOCKED;
bool waited = false;
for (;;) {
if (val >= 2 * QEMU_LOCKCNT_COUNT_STEP) {
int expected = val;
val = qatomic_cmpxchg(&lockcnt->count, val,
val - QEMU_LOCKCNT_COUNT_STEP);
if (val == expected) {
break;
}
} else {
/* If count is going 1->0, take the lock. The fast path is
* (1, unlocked)->(0, locked) or (1, unlocked)->(0, waiting).
*/
if (qemu_lockcnt_cmpxchg_or_wait(lockcnt, &val, locked_state, &waited)) {
return true;
}
if (waited) {
/* At this point we do not know if there are more waiters. Assume
* there are.
*/
locked_state = QEMU_LOCKCNT_STATE_WAITING;
}
}
}
/* If we were woken by another thread, but we're returning in unlocked
* state, we should also wake a thread because we are effectively
* releasing the lock that was given to us. This is the case where
* qemu_lockcnt_lock would leave QEMU_LOCKCNT_STATE_WAITING in the low
* bits, and qemu_lockcnt_unlock would find it and wake someone.
*/
if (waited) {
lockcnt_wake(lockcnt);
}
return false;
}
/* If the counter is one, decrement it and return locked. Otherwise do
* nothing.
*
* If the function returns true, it is impossible for the counter to
* become nonzero until the next qemu_lockcnt_unlock.
*/
bool qemu_lockcnt_dec_if_lock(QemuLockCnt *lockcnt)
{
int val = qatomic_read(&lockcnt->count);
int locked_state = QEMU_LOCKCNT_STATE_LOCKED;
bool waited = false;
while (val < 2 * QEMU_LOCKCNT_COUNT_STEP) {
/* If count is going 1->0, take the lock. The fast path is
* (1, unlocked)->(0, locked) or (1, unlocked)->(0, waiting).
*/
if (qemu_lockcnt_cmpxchg_or_wait(lockcnt, &val, locked_state, &waited)) {
return true;
}
if (waited) {
/* At this point we do not know if there are more waiters. Assume
* there are.
*/
locked_state = QEMU_LOCKCNT_STATE_WAITING;
}
}
/* If we were woken by another thread, but we're returning in unlocked
* state, we should also wake a thread because we are effectively
* releasing the lock that was given to us. This is the case where
* qemu_lockcnt_lock would leave QEMU_LOCKCNT_STATE_WAITING in the low
* bits, and qemu_lockcnt_inc_and_unlock would find it and wake someone.
*/
if (waited) {
lockcnt_wake(lockcnt);
}
return false;
}
void qemu_lockcnt_lock(QemuLockCnt *lockcnt)
{
int val = qatomic_read(&lockcnt->count);
int step = QEMU_LOCKCNT_STATE_LOCKED;
bool waited = false;
/* The third argument is only used if the low bits of val are 0
* (QEMU_LOCKCNT_STATE_FREE), so just blindly mix in the desired
* state.
*/
while (!qemu_lockcnt_cmpxchg_or_wait(lockcnt, &val, val + step, &waited)) {
if (waited) {
/* At this point we do not know if there are more waiters. Assume
* there are.
*/
step = QEMU_LOCKCNT_STATE_WAITING;
}
}
}
void qemu_lockcnt_inc_and_unlock(QemuLockCnt *lockcnt)
{
int expected, new, val;
val = qatomic_read(&lockcnt->count);
do {
expected = val;
new = (val + QEMU_LOCKCNT_COUNT_STEP) & ~QEMU_LOCKCNT_STATE_MASK;
trace_lockcnt_unlock_attempt(lockcnt, val, new);
val = qatomic_cmpxchg(&lockcnt->count, val, new);
} while (val != expected);
trace_lockcnt_unlock_success(lockcnt, val, new);
if (val & QEMU_LOCKCNT_STATE_WAITING) {
lockcnt_wake(lockcnt);
}
}
void qemu_lockcnt_unlock(QemuLockCnt *lockcnt)
{
int expected, new, val;
val = qatomic_read(&lockcnt->count);
do {
expected = val;
new = val & ~QEMU_LOCKCNT_STATE_MASK;
trace_lockcnt_unlock_attempt(lockcnt, val, new);
val = qatomic_cmpxchg(&lockcnt->count, val, new);
} while (val != expected);
trace_lockcnt_unlock_success(lockcnt, val, new);
if (val & QEMU_LOCKCNT_STATE_WAITING) {
lockcnt_wake(lockcnt);
}
}
unsigned qemu_lockcnt_count(QemuLockCnt *lockcnt)
{
return qatomic_read(&lockcnt->count) >> QEMU_LOCKCNT_COUNT_SHIFT;
}
#else
void qemu_lockcnt_init(QemuLockCnt *lockcnt)
{
qemu_mutex_init(&lockcnt->mutex);
lockcnt->count = 0;
}
void qemu_lockcnt_destroy(QemuLockCnt *lockcnt)
{
qemu_mutex_destroy(&lockcnt->mutex);
}
void qemu_lockcnt_inc(QemuLockCnt *lockcnt)
{
int old;
for (;;) {
old = qatomic_read(&lockcnt->count);
if (old == 0) {
qemu_lockcnt_lock(lockcnt);
qemu_lockcnt_inc_and_unlock(lockcnt);
return;
} else {
if (qatomic_cmpxchg(&lockcnt->count, old, old + 1) == old) {
return;
}
}
}
}
void qemu_lockcnt_dec(QemuLockCnt *lockcnt)
{
qatomic_dec(&lockcnt->count);
}
/* Decrement a counter, and return locked if it is decremented to zero.
* It is impossible for the counter to become nonzero while the mutex
* is taken.
*/
bool qemu_lockcnt_dec_and_lock(QemuLockCnt *lockcnt)
{
int val = qatomic_read(&lockcnt->count);
while (val > 1) {
int old = qatomic_cmpxchg(&lockcnt->count, val, val - 1);
if (old != val) {
val = old;
continue;
}
return false;
}
qemu_lockcnt_lock(lockcnt);
if (qatomic_fetch_dec(&lockcnt->count) == 1) {
return true;
}
qemu_lockcnt_unlock(lockcnt);
return false;
}
/* Decrement a counter and return locked if it is decremented to zero.
* Otherwise do nothing.
*
* It is impossible for the counter to become nonzero while the mutex
* is taken.
*/
bool qemu_lockcnt_dec_if_lock(QemuLockCnt *lockcnt)
{
/* No need for acquire semantics if we return false. */
int val = qatomic_read(&lockcnt->count);
if (val > 1) {
return false;
}
qemu_lockcnt_lock(lockcnt);
if (qatomic_fetch_dec(&lockcnt->count) == 1) {
return true;
}
qemu_lockcnt_inc_and_unlock(lockcnt);
return false;
}
void qemu_lockcnt_lock(QemuLockCnt *lockcnt)
{
qemu_mutex_lock(&lockcnt->mutex);
}
void qemu_lockcnt_inc_and_unlock(QemuLockCnt *lockcnt)
{
qatomic_inc(&lockcnt->count);
qemu_mutex_unlock(&lockcnt->mutex);
}
void qemu_lockcnt_unlock(QemuLockCnt *lockcnt)
{
qemu_mutex_unlock(&lockcnt->mutex);
}
unsigned qemu_lockcnt_count(QemuLockCnt *lockcnt)
{
return qatomic_read(&lockcnt->count);
}
#endif
|