1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/*
* AArch64 specific prctl functions for linux-user
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#ifndef AARCH64_TARGET_PRCTL_H
#define AARCH64_TARGET_PRCTL_H
static abi_long do_prctl_sve_get_vl(CPUArchState *env)
{
ARMCPU *cpu = env_archcpu(env);
if (cpu_isar_feature(aa64_sve, cpu)) {
/* PSTATE.SM is always unset on syscall entry. */
return sve_vq(env) * 16;
}
return -TARGET_EINVAL;
}
#define do_prctl_sve_get_vl do_prctl_sve_get_vl
static abi_long do_prctl_sve_set_vl(CPUArchState *env, abi_long arg2)
{
/*
* We cannot support either PR_SVE_SET_VL_ONEXEC or PR_SVE_VL_INHERIT.
* Note the kernel definition of sve_vl_valid allows for VQ=512,
* i.e. VL=8192, even though the current architectural maximum is VQ=16.
*/
if (cpu_isar_feature(aa64_sve, env_archcpu(env))
&& arg2 >= 0 && arg2 <= 512 * 16 && !(arg2 & 15)) {
uint32_t vq, old_vq;
/* PSTATE.SM is always unset on syscall entry. */
old_vq = sve_vq(env);
/*
* Bound the value of arg2, so that we know that it fits into
* the 4-bit field in ZCR_EL1. Rely on the hflags rebuild to
* sort out the length supported by the cpu.
*/
vq = MAX(arg2 / 16, 1);
vq = MIN(vq, ARM_MAX_VQ);
env->vfp.zcr_el[1] = vq - 1;
arm_rebuild_hflags(env);
vq = sve_vq(env);
if (vq < old_vq) {
aarch64_sve_narrow_vq(env, vq);
}
return vq * 16;
}
return -TARGET_EINVAL;
}
#define do_prctl_sve_set_vl do_prctl_sve_set_vl
static abi_long do_prctl_sme_get_vl(CPUArchState *env)
{
ARMCPU *cpu = env_archcpu(env);
if (cpu_isar_feature(aa64_sme, cpu)) {
return sme_vq(env) * 16;
}
return -TARGET_EINVAL;
}
#define do_prctl_sme_get_vl do_prctl_sme_get_vl
static abi_long do_prctl_sme_set_vl(CPUArchState *env, abi_long arg2)
{
/*
* We cannot support either PR_SME_SET_VL_ONEXEC or PR_SME_VL_INHERIT.
* Note the kernel definition of sve_vl_valid allows for VQ=512,
* i.e. VL=8192, even though the architectural maximum is VQ=16.
*/
if (cpu_isar_feature(aa64_sme, env_archcpu(env))
&& arg2 >= 0 && arg2 <= 512 * 16 && !(arg2 & 15)) {
int vq, old_vq;
old_vq = sme_vq(env);
/*
* Bound the value of vq, so that we know that it fits into
* the 4-bit field in SMCR_EL1. Because PSTATE.SM is cleared
* on syscall entry, we are not modifying the current SVE
* vector length.
*/
vq = MAX(arg2 / 16, 1);
vq = MIN(vq, 16);
env->vfp.smcr_el[1] =
FIELD_DP64(env->vfp.smcr_el[1], SMCR, LEN, vq - 1);
/* Delay rebuilding hflags until we know if ZA must change. */
vq = sve_vqm1_for_el_sm(env, 0, true) + 1;
if (vq != old_vq) {
/*
* PSTATE.ZA state is cleared on any change to SVL.
* We need not call arm_rebuild_hflags because PSTATE.SM was
* cleared on syscall entry, so this hasn't changed VL.
*/
env->svcr = FIELD_DP64(env->svcr, SVCR, ZA, 0);
arm_rebuild_hflags(env);
}
return vq * 16;
}
return -TARGET_EINVAL;
}
#define do_prctl_sme_set_vl do_prctl_sme_set_vl
static abi_long do_prctl_reset_keys(CPUArchState *env, abi_long arg2)
{
ARMCPU *cpu = env_archcpu(env);
if (cpu_isar_feature(aa64_pauth, cpu)) {
int all = (PR_PAC_APIAKEY | PR_PAC_APIBKEY |
PR_PAC_APDAKEY | PR_PAC_APDBKEY | PR_PAC_APGAKEY);
int ret = 0;
Error *err = NULL;
if (arg2 == 0) {
arg2 = all;
} else if (arg2 & ~all) {
return -TARGET_EINVAL;
}
if (arg2 & PR_PAC_APIAKEY) {
ret |= qemu_guest_getrandom(&env->keys.apia,
sizeof(ARMPACKey), &err);
}
if (arg2 & PR_PAC_APIBKEY) {
ret |= qemu_guest_getrandom(&env->keys.apib,
sizeof(ARMPACKey), &err);
}
if (arg2 & PR_PAC_APDAKEY) {
ret |= qemu_guest_getrandom(&env->keys.apda,
sizeof(ARMPACKey), &err);
}
if (arg2 & PR_PAC_APDBKEY) {
ret |= qemu_guest_getrandom(&env->keys.apdb,
sizeof(ARMPACKey), &err);
}
if (arg2 & PR_PAC_APGAKEY) {
ret |= qemu_guest_getrandom(&env->keys.apga,
sizeof(ARMPACKey), &err);
}
if (ret != 0) {
/*
* Some unknown failure in the crypto. The best
* we can do is log it and fail the syscall.
* The real syscall cannot fail this way.
*/
qemu_log_mask(LOG_UNIMP, "PR_PAC_RESET_KEYS: Crypto failure: %s",
error_get_pretty(err));
error_free(err);
return -TARGET_EIO;
}
return 0;
}
return -TARGET_EINVAL;
}
#define do_prctl_reset_keys do_prctl_reset_keys
static abi_long do_prctl_set_tagged_addr_ctrl(CPUArchState *env, abi_long arg2)
{
abi_ulong valid_mask = PR_TAGGED_ADDR_ENABLE;
ARMCPU *cpu = env_archcpu(env);
if (cpu_isar_feature(aa64_mte, cpu)) {
valid_mask |= PR_MTE_TCF_MASK;
valid_mask |= PR_MTE_TAG_MASK;
}
if (arg2 & ~valid_mask) {
return -TARGET_EINVAL;
}
env->tagged_addr_enable = arg2 & PR_TAGGED_ADDR_ENABLE;
if (cpu_isar_feature(aa64_mte, cpu)) {
/*
* Write PR_MTE_TCF to SCTLR_EL1[TCF0].
*
* The kernel has a per-cpu configuration for the sysadmin,
* /sys/devices/system/cpu/cpu<N>/mte_tcf_preferred,
* which qemu does not implement.
*
* Because there is no performance difference between the modes, and
* because SYNC is most useful for debugging MTE errors, choose SYNC
* as the preferred mode. With this preference, and the way the API
* uses only two bits, there is no way for the program to select
* ASYMM mode.
*/
unsigned tcf = 0;
if (arg2 & PR_MTE_TCF_SYNC) {
tcf = 1;
} else if (arg2 & PR_MTE_TCF_ASYNC) {
tcf = 2;
}
env->cp15.sctlr_el[1] = deposit64(env->cp15.sctlr_el[1], 38, 2, tcf);
/*
* Write PR_MTE_TAG to GCR_EL1[Exclude].
* Note that the syscall uses an include mask,
* and hardware uses an exclude mask -- invert.
*/
env->cp15.gcr_el1 =
deposit64(env->cp15.gcr_el1, 0, 16, ~arg2 >> PR_MTE_TAG_SHIFT);
arm_rebuild_hflags(env);
}
return 0;
}
#define do_prctl_set_tagged_addr_ctrl do_prctl_set_tagged_addr_ctrl
static abi_long do_prctl_get_tagged_addr_ctrl(CPUArchState *env)
{
ARMCPU *cpu = env_archcpu(env);
abi_long ret = 0;
if (env->tagged_addr_enable) {
ret |= PR_TAGGED_ADDR_ENABLE;
}
if (cpu_isar_feature(aa64_mte, cpu)) {
/* See do_prctl_set_tagged_addr_ctrl. */
ret |= extract64(env->cp15.sctlr_el[1], 38, 2) << PR_MTE_TCF_SHIFT;
ret = deposit64(ret, PR_MTE_TAG_SHIFT, 16, ~env->cp15.gcr_el1);
}
return ret;
}
#define do_prctl_get_tagged_addr_ctrl do_prctl_get_tagged_addr_ctrl
#endif /* AARCH64_TARGET_PRCTL_H */
|