1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
|
/*
* Elliptic curves over GF(p): generic functions
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of mbed TLS (https://tls.mbed.org)
*/
/*
* References:
*
* SEC1 http://www.secg.org/index.php?action=secg,docs_secg
* GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
* FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
* RFC 4492 for the related TLS structures and constants
* RFC 7748 for the Curve448 and Curve25519 curve definitions
*
* [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
*
* [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
* for elliptic curve cryptosystems. In : Cryptographic Hardware and
* Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
* <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
*
* [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
* render ECC resistant against Side Channel Attacks. IACR Cryptology
* ePrint Archive, 2004, vol. 2004, p. 342.
* <http://eprint.iacr.org/2004/342.pdf>
*/
#if !defined(MBEDTLS_CONFIG_FILE)
#include "mbedtls/config.h"
#else
#include MBEDTLS_CONFIG_FILE
#endif
/**
* \brief Function level alternative implementation.
*
* The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
* replace certain functions in this module. The alternative implementations are
* typically hardware accelerators and need to activate the hardware before the
* computation starts and deactivate it after it finishes. The
* mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
* this purpose.
*
* To preserve the correct functionality the following conditions must hold:
*
* - The alternative implementation must be activated by
* mbedtls_internal_ecp_init() before any of the replaceable functions is
* called.
* - mbedtls_internal_ecp_free() must \b only be called when the alternative
* implementation is activated.
* - mbedtls_internal_ecp_init() must \b not be called when the alternative
* implementation is activated.
* - Public functions must not return while the alternative implementation is
* activated.
* - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
* before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
* \endcode ensures that the alternative implementation supports the current
* group.
*/
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
#endif
#if defined(MBEDTLS_ECP_C)
#include "mbedtls/ecp.h"
#include "mbedtls/threading.h"
#include "mbedtls/platform_util.h"
#include <string.h>
#if !defined(MBEDTLS_ECP_ALT)
/* Parameter validation macros based on platform_util.h */
#define ECP_VALIDATE_RET( cond ) \
MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA )
#define ECP_VALIDATE( cond ) \
MBEDTLS_INTERNAL_VALIDATE( cond )
#if defined(MBEDTLS_PLATFORM_C)
#include "mbedtls/platform.h"
#else
#include <stdlib.h>
#include <stdio.h>
#define mbedtls_printf printf
#define mbedtls_calloc calloc
#define mbedtls_free free
#endif
#include "mbedtls/ecp_internal.h"
#if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
!defined(inline) && !defined(__cplusplus)
#define inline __inline
#endif
#if defined(MBEDTLS_SELF_TEST)
/*
* Counts of point addition and doubling, and field multiplications.
* Used to test resistance of point multiplication to simple timing attacks.
*/
static unsigned long add_count, dbl_count, mul_count;
#endif
#if defined(MBEDTLS_ECP_RESTARTABLE)
/*
* Maximum number of "basic operations" to be done in a row.
*
* Default value 0 means that ECC operations will not yield.
* Note that regardless of the value of ecp_max_ops, always at
* least one step is performed before yielding.
*
* Setting ecp_max_ops=1 can be suitable for testing purposes
* as it will interrupt computation at all possible points.
*/
static unsigned ecp_max_ops = 0;
/*
* Set ecp_max_ops
*/
void mbedtls_ecp_set_max_ops( unsigned max_ops )
{
ecp_max_ops = max_ops;
}
/*
* Check if restart is enabled
*/
int mbedtls_ecp_restart_is_enabled( void )
{
return( ecp_max_ops != 0 );
}
/*
* Restart sub-context for ecp_mul_comb()
*/
struct mbedtls_ecp_restart_mul
{
mbedtls_ecp_point R; /* current intermediate result */
size_t i; /* current index in various loops, 0 outside */
mbedtls_ecp_point *T; /* table for precomputed points */
unsigned char T_size; /* number of points in table T */
enum { /* what were we doing last time we returned? */
ecp_rsm_init = 0, /* nothing so far, dummy initial state */
ecp_rsm_pre_dbl, /* precompute 2^n multiples */
ecp_rsm_pre_norm_dbl, /* normalize precomputed 2^n multiples */
ecp_rsm_pre_add, /* precompute remaining points by adding */
ecp_rsm_pre_norm_add, /* normalize all precomputed points */
ecp_rsm_comb_core, /* ecp_mul_comb_core() */
ecp_rsm_final_norm, /* do the final normalization */
} state;
};
/*
* Init restart_mul sub-context
*/
static void ecp_restart_rsm_init( mbedtls_ecp_restart_mul_ctx *ctx )
{
mbedtls_ecp_point_init( &ctx->R );
ctx->i = 0;
ctx->T = NULL;
ctx->T_size = 0;
ctx->state = ecp_rsm_init;
}
/*
* Free the components of a restart_mul sub-context
*/
static void ecp_restart_rsm_free( mbedtls_ecp_restart_mul_ctx *ctx )
{
unsigned char i;
if( ctx == NULL )
return;
mbedtls_ecp_point_free( &ctx->R );
if( ctx->T != NULL )
{
for( i = 0; i < ctx->T_size; i++ )
mbedtls_ecp_point_free( ctx->T + i );
mbedtls_free( ctx->T );
}
ecp_restart_rsm_init( ctx );
}
/*
* Restart context for ecp_muladd()
*/
struct mbedtls_ecp_restart_muladd
{
mbedtls_ecp_point mP; /* mP value */
mbedtls_ecp_point R; /* R intermediate result */
enum { /* what should we do next? */
ecp_rsma_mul1 = 0, /* first multiplication */
ecp_rsma_mul2, /* second multiplication */
ecp_rsma_add, /* addition */
ecp_rsma_norm, /* normalization */
} state;
};
/*
* Init restart_muladd sub-context
*/
static void ecp_restart_ma_init( mbedtls_ecp_restart_muladd_ctx *ctx )
{
mbedtls_ecp_point_init( &ctx->mP );
mbedtls_ecp_point_init( &ctx->R );
ctx->state = ecp_rsma_mul1;
}
/*
* Free the components of a restart_muladd sub-context
*/
static void ecp_restart_ma_free( mbedtls_ecp_restart_muladd_ctx *ctx )
{
if( ctx == NULL )
return;
mbedtls_ecp_point_free( &ctx->mP );
mbedtls_ecp_point_free( &ctx->R );
ecp_restart_ma_init( ctx );
}
/*
* Initialize a restart context
*/
void mbedtls_ecp_restart_init( mbedtls_ecp_restart_ctx *ctx )
{
ECP_VALIDATE( ctx != NULL );
ctx->ops_done = 0;
ctx->depth = 0;
ctx->rsm = NULL;
ctx->ma = NULL;
}
/*
* Free the components of a restart context
*/
void mbedtls_ecp_restart_free( mbedtls_ecp_restart_ctx *ctx )
{
if( ctx == NULL )
return;
ecp_restart_rsm_free( ctx->rsm );
mbedtls_free( ctx->rsm );
ecp_restart_ma_free( ctx->ma );
mbedtls_free( ctx->ma );
mbedtls_ecp_restart_init( ctx );
}
/*
* Check if we can do the next step
*/
int mbedtls_ecp_check_budget( const mbedtls_ecp_group *grp,
mbedtls_ecp_restart_ctx *rs_ctx,
unsigned ops )
{
ECP_VALIDATE_RET( grp != NULL );
if( rs_ctx != NULL && ecp_max_ops != 0 )
{
/* scale depending on curve size: the chosen reference is 256-bit,
* and multiplication is quadratic. Round to the closest integer. */
if( grp->pbits >= 512 )
ops *= 4;
else if( grp->pbits >= 384 )
ops *= 2;
/* Avoid infinite loops: always allow first step.
* Because of that, however, it's not generally true
* that ops_done <= ecp_max_ops, so the check
* ops_done > ecp_max_ops below is mandatory. */
if( ( rs_ctx->ops_done != 0 ) &&
( rs_ctx->ops_done > ecp_max_ops ||
ops > ecp_max_ops - rs_ctx->ops_done ) )
{
return( MBEDTLS_ERR_ECP_IN_PROGRESS );
}
/* update running count */
rs_ctx->ops_done += ops;
}
return( 0 );
}
/* Call this when entering a function that needs its own sub-context */
#define ECP_RS_ENTER( SUB ) do { \
/* reset ops count for this call if top-level */ \
if( rs_ctx != NULL && rs_ctx->depth++ == 0 ) \
rs_ctx->ops_done = 0; \
\
/* set up our own sub-context if needed */ \
if( mbedtls_ecp_restart_is_enabled() && \
rs_ctx != NULL && rs_ctx->SUB == NULL ) \
{ \
rs_ctx->SUB = mbedtls_calloc( 1, sizeof( *rs_ctx->SUB ) ); \
if( rs_ctx->SUB == NULL ) \
return( MBEDTLS_ERR_ECP_ALLOC_FAILED ); \
\
ecp_restart_## SUB ##_init( rs_ctx->SUB ); \
} \
} while( 0 )
/* Call this when leaving a function that needs its own sub-context */
#define ECP_RS_LEAVE( SUB ) do { \
/* clear our sub-context when not in progress (done or error) */ \
if( rs_ctx != NULL && rs_ctx->SUB != NULL && \
ret != MBEDTLS_ERR_ECP_IN_PROGRESS ) \
{ \
ecp_restart_## SUB ##_free( rs_ctx->SUB ); \
mbedtls_free( rs_ctx->SUB ); \
rs_ctx->SUB = NULL; \
} \
\
if( rs_ctx != NULL ) \
rs_ctx->depth--; \
} while( 0 )
#else /* MBEDTLS_ECP_RESTARTABLE */
#define ECP_RS_ENTER( sub ) (void) rs_ctx;
#define ECP_RS_LEAVE( sub ) (void) rs_ctx;
#endif /* MBEDTLS_ECP_RESTARTABLE */
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) || \
defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) || \
defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) || \
defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) || \
defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) || \
defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) || \
defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
#define ECP_SHORTWEIERSTRASS
#endif
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) || \
defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
#define ECP_MONTGOMERY
#endif
/*
* Curve types: internal for now, might be exposed later
*/
typedef enum
{
ECP_TYPE_NONE = 0,
ECP_TYPE_SHORT_WEIERSTRASS, /* y^2 = x^3 + a x + b */
ECP_TYPE_MONTGOMERY, /* y^2 = x^3 + a x^2 + x */
} ecp_curve_type;
/*
* List of supported curves:
* - internal ID
* - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
* - size in bits
* - readable name
*
* Curves are listed in order: largest curves first, and for a given size,
* fastest curves first. This provides the default order for the SSL module.
*
* Reminder: update profiles in x509_crt.c when adding a new curves!
*/
static const mbedtls_ecp_curve_info ecp_supported_curves[] =
{
#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
{ MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
#endif
#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
{ MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
#endif
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
{ MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
#endif
#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
{ MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
#endif
#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
{ MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
#endif
#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
{ MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
#endif
#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
{ MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
#endif
#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
{ MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
#endif
#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
{ MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
#endif
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
{ MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
#endif
#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
{ MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
#endif
{ MBEDTLS_ECP_DP_NONE, 0, 0, NULL },
};
#define ECP_NB_CURVES sizeof( ecp_supported_curves ) / \
sizeof( ecp_supported_curves[0] )
static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
/*
* List of supported curves and associated info
*/
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list( void )
{
return( ecp_supported_curves );
}
/*
* List of supported curves, group ID only
*/
const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list( void )
{
static int init_done = 0;
if( ! init_done )
{
size_t i = 0;
const mbedtls_ecp_curve_info *curve_info;
for( curve_info = mbedtls_ecp_curve_list();
curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
curve_info++ )
{
ecp_supported_grp_id[i++] = curve_info->grp_id;
}
ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
init_done = 1;
}
return( ecp_supported_grp_id );
}
/*
* Get the curve info for the internal identifier
*/
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id )
{
const mbedtls_ecp_curve_info *curve_info;
for( curve_info = mbedtls_ecp_curve_list();
curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
curve_info++ )
{
if( curve_info->grp_id == grp_id )
return( curve_info );
}
return( NULL );
}
/*
* Get the curve info from the TLS identifier
*/
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id )
{
const mbedtls_ecp_curve_info *curve_info;
for( curve_info = mbedtls_ecp_curve_list();
curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
curve_info++ )
{
if( curve_info->tls_id == tls_id )
return( curve_info );
}
return( NULL );
}
/*
* Get the curve info from the name
*/
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name( const char *name )
{
const mbedtls_ecp_curve_info *curve_info;
if( name == NULL )
return( NULL );
for( curve_info = mbedtls_ecp_curve_list();
curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
curve_info++ )
{
if( strcmp( curve_info->name, name ) == 0 )
return( curve_info );
}
return( NULL );
}
/*
* Get the type of a curve
*/
static inline ecp_curve_type ecp_get_type( const mbedtls_ecp_group *grp )
{
if( grp->G.X.p == NULL )
return( ECP_TYPE_NONE );
if( grp->G.Y.p == NULL )
return( ECP_TYPE_MONTGOMERY );
else
return( ECP_TYPE_SHORT_WEIERSTRASS );
}
/*
* Initialize (the components of) a point
*/
void mbedtls_ecp_point_init( mbedtls_ecp_point *pt )
{
ECP_VALIDATE( pt != NULL );
mbedtls_mpi_init( &pt->X );
mbedtls_mpi_init( &pt->Y );
mbedtls_mpi_init( &pt->Z );
}
/*
* Initialize (the components of) a group
*/
void mbedtls_ecp_group_init( mbedtls_ecp_group *grp )
{
ECP_VALIDATE( grp != NULL );
grp->id = MBEDTLS_ECP_DP_NONE;
mbedtls_mpi_init( &grp->P );
mbedtls_mpi_init( &grp->A );
mbedtls_mpi_init( &grp->B );
mbedtls_ecp_point_init( &grp->G );
mbedtls_mpi_init( &grp->N );
grp->pbits = 0;
grp->nbits = 0;
grp->h = 0;
grp->modp = NULL;
grp->t_pre = NULL;
grp->t_post = NULL;
grp->t_data = NULL;
grp->T = NULL;
grp->T_size = 0;
}
/*
* Initialize (the components of) a key pair
*/
void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair *key )
{
ECP_VALIDATE( key != NULL );
mbedtls_ecp_group_init( &key->grp );
mbedtls_mpi_init( &key->d );
mbedtls_ecp_point_init( &key->Q );
}
/*
* Unallocate (the components of) a point
*/
void mbedtls_ecp_point_free( mbedtls_ecp_point *pt )
{
if( pt == NULL )
return;
mbedtls_mpi_free( &( pt->X ) );
mbedtls_mpi_free( &( pt->Y ) );
mbedtls_mpi_free( &( pt->Z ) );
}
/*
* Unallocate (the components of) a group
*/
void mbedtls_ecp_group_free( mbedtls_ecp_group *grp )
{
size_t i;
if( grp == NULL )
return;
if( grp->h != 1 )
{
mbedtls_mpi_free( &grp->P );
mbedtls_mpi_free( &grp->A );
mbedtls_mpi_free( &grp->B );
mbedtls_ecp_point_free( &grp->G );
mbedtls_mpi_free( &grp->N );
}
if( grp->T != NULL )
{
for( i = 0; i < grp->T_size; i++ )
mbedtls_ecp_point_free( &grp->T[i] );
mbedtls_free( grp->T );
}
mbedtls_platform_zeroize( grp, sizeof( mbedtls_ecp_group ) );
}
/*
* Unallocate (the components of) a key pair
*/
void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair *key )
{
if( key == NULL )
return;
mbedtls_ecp_group_free( &key->grp );
mbedtls_mpi_free( &key->d );
mbedtls_ecp_point_free( &key->Q );
}
/*
* Copy the contents of a point
*/
int mbedtls_ecp_copy( mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
{
int ret;
ECP_VALIDATE_RET( P != NULL );
ECP_VALIDATE_RET( Q != NULL );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->X, &Q->X ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Y, &Q->Y ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Z, &Q->Z ) );
cleanup:
return( ret );
}
/*
* Copy the contents of a group object
*/
int mbedtls_ecp_group_copy( mbedtls_ecp_group *dst, const mbedtls_ecp_group *src )
{
ECP_VALIDATE_RET( dst != NULL );
ECP_VALIDATE_RET( src != NULL );
return( mbedtls_ecp_group_load( dst, src->id ) );
}
/*
* Set point to zero
*/
int mbedtls_ecp_set_zero( mbedtls_ecp_point *pt )
{
int ret;
ECP_VALIDATE_RET( pt != NULL );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->X , 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Y , 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z , 0 ) );
cleanup:
return( ret );
}
/*
* Tell if a point is zero
*/
int mbedtls_ecp_is_zero( mbedtls_ecp_point *pt )
{
ECP_VALIDATE_RET( pt != NULL );
return( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 );
}
/*
* Compare two points lazily
*/
int mbedtls_ecp_point_cmp( const mbedtls_ecp_point *P,
const mbedtls_ecp_point *Q )
{
ECP_VALIDATE_RET( P != NULL );
ECP_VALIDATE_RET( Q != NULL );
if( mbedtls_mpi_cmp_mpi( &P->X, &Q->X ) == 0 &&
mbedtls_mpi_cmp_mpi( &P->Y, &Q->Y ) == 0 &&
mbedtls_mpi_cmp_mpi( &P->Z, &Q->Z ) == 0 )
{
return( 0 );
}
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
}
/*
* Import a non-zero point from ASCII strings
*/
int mbedtls_ecp_point_read_string( mbedtls_ecp_point *P, int radix,
const char *x, const char *y )
{
int ret;
ECP_VALIDATE_RET( P != NULL );
ECP_VALIDATE_RET( x != NULL );
ECP_VALIDATE_RET( y != NULL );
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->X, radix, x ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->Y, radix, y ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
cleanup:
return( ret );
}
/*
* Export a point into unsigned binary data (SEC1 2.3.3)
*/
int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group *grp,
const mbedtls_ecp_point *P,
int format, size_t *olen,
unsigned char *buf, size_t buflen )
{
int ret = 0;
size_t plen;
ECP_VALIDATE_RET( grp != NULL );
ECP_VALIDATE_RET( P != NULL );
ECP_VALIDATE_RET( olen != NULL );
ECP_VALIDATE_RET( buf != NULL );
ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
format == MBEDTLS_ECP_PF_COMPRESSED );
/*
* Common case: P == 0
*/
if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
{
if( buflen < 1 )
return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
buf[0] = 0x00;
*olen = 1;
return( 0 );
}
plen = mbedtls_mpi_size( &grp->P );
if( format == MBEDTLS_ECP_PF_UNCOMPRESSED )
{
*olen = 2 * plen + 1;
if( buflen < *olen )
return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
buf[0] = 0x04;
MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
}
else if( format == MBEDTLS_ECP_PF_COMPRESSED )
{
*olen = plen + 1;
if( buflen < *olen )
return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
buf[0] = 0x02 + mbedtls_mpi_get_bit( &P->Y, 0 );
MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
}
cleanup:
return( ret );
}
/*
* Import a point from unsigned binary data (SEC1 2.3.4)
*/
int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *pt,
const unsigned char *buf, size_t ilen )
{
int ret;
size_t plen;
ECP_VALIDATE_RET( grp != NULL );
ECP_VALIDATE_RET( pt != NULL );
ECP_VALIDATE_RET( buf != NULL );
if( ilen < 1 )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
if( buf[0] == 0x00 )
{
if( ilen == 1 )
return( mbedtls_ecp_set_zero( pt ) );
else
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
}
plen = mbedtls_mpi_size( &grp->P );
if( buf[0] != 0x04 )
return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
if( ilen != 2 * plen + 1 )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->X, buf + 1, plen ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
cleanup:
return( ret );
}
/*
* Import a point from a TLS ECPoint record (RFC 4492)
* struct {
* opaque point <1..2^8-1>;
* } ECPoint;
*/
int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *pt,
const unsigned char **buf, size_t buf_len )
{
unsigned char data_len;
const unsigned char *buf_start;
ECP_VALIDATE_RET( grp != NULL );
ECP_VALIDATE_RET( pt != NULL );
ECP_VALIDATE_RET( buf != NULL );
ECP_VALIDATE_RET( *buf != NULL );
/*
* We must have at least two bytes (1 for length, at least one for data)
*/
if( buf_len < 2 )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
data_len = *(*buf)++;
if( data_len < 1 || data_len > buf_len - 1 )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
/*
* Save buffer start for read_binary and update buf
*/
buf_start = *buf;
*buf += data_len;
return( mbedtls_ecp_point_read_binary( grp, pt, buf_start, data_len ) );
}
/*
* Export a point as a TLS ECPoint record (RFC 4492)
* struct {
* opaque point <1..2^8-1>;
* } ECPoint;
*/
int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
int format, size_t *olen,
unsigned char *buf, size_t blen )
{
int ret;
ECP_VALIDATE_RET( grp != NULL );
ECP_VALIDATE_RET( pt != NULL );
ECP_VALIDATE_RET( olen != NULL );
ECP_VALIDATE_RET( buf != NULL );
ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
format == MBEDTLS_ECP_PF_COMPRESSED );
/*
* buffer length must be at least one, for our length byte
*/
if( blen < 1 )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
if( ( ret = mbedtls_ecp_point_write_binary( grp, pt, format,
olen, buf + 1, blen - 1) ) != 0 )
return( ret );
/*
* write length to the first byte and update total length
*/
buf[0] = (unsigned char) *olen;
++*olen;
return( 0 );
}
/*
* Set a group from an ECParameters record (RFC 4492)
*/
int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp,
const unsigned char **buf, size_t len )
{
int ret;
mbedtls_ecp_group_id grp_id;
ECP_VALIDATE_RET( grp != NULL );
ECP_VALIDATE_RET( buf != NULL );
ECP_VALIDATE_RET( *buf != NULL );
if( ( ret = mbedtls_ecp_tls_read_group_id( &grp_id, buf, len ) ) != 0 )
return( ret );
return( mbedtls_ecp_group_load( grp, grp_id ) );
}
/*
* Read a group id from an ECParameters record (RFC 4492) and convert it to
* mbedtls_ecp_group_id.
*/
int mbedtls_ecp_tls_read_group_id( mbedtls_ecp_group_id *grp,
const unsigned char **buf, size_t len )
{
uint16_t tls_id;
const mbedtls_ecp_curve_info *curve_info;
ECP_VALIDATE_RET( grp != NULL );
ECP_VALIDATE_RET( buf != NULL );
ECP_VALIDATE_RET( *buf != NULL );
/*
* We expect at least three bytes (see below)
*/
if( len < 3 )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
/*
* First byte is curve_type; only named_curve is handled
*/
if( *(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
/*
* Next two bytes are the namedcurve value
*/
tls_id = *(*buf)++;
tls_id <<= 8;
tls_id |= *(*buf)++;
if( ( curve_info = mbedtls_ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
*grp = curve_info->grp_id;
return( 0 );
}
/*
* Write the ECParameters record corresponding to a group (RFC 4492)
*/
int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen,
unsigned char *buf, size_t blen )
{
const mbedtls_ecp_curve_info *curve_info;
ECP_VALIDATE_RET( grp != NULL );
ECP_VALIDATE_RET( buf != NULL );
ECP_VALIDATE_RET( olen != NULL );
if( ( curve_info = mbedtls_ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
/*
* We are going to write 3 bytes (see below)
*/
*olen = 3;
if( blen < *olen )
return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
/*
* First byte is curve_type, always named_curve
*/
*buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
/*
* Next two bytes are the namedcurve value
*/
buf[0] = curve_info->tls_id >> 8;
buf[1] = curve_info->tls_id & 0xFF;
return( 0 );
}
/*
* Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
* See the documentation of struct mbedtls_ecp_group.
*
* This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
*/
static int ecp_modp( mbedtls_mpi *N, const mbedtls_ecp_group *grp )
{
int ret;
if( grp->modp == NULL )
return( mbedtls_mpi_mod_mpi( N, N, &grp->P ) );
/* N->s < 0 is a much faster test, which fails only if N is 0 */
if( ( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) ||
mbedtls_mpi_bitlen( N ) > 2 * grp->pbits )
{
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
}
MBEDTLS_MPI_CHK( grp->modp( N ) );
/* N->s < 0 is a much faster test, which fails only if N is 0 */
while( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 )
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &grp->P ) );
while( mbedtls_mpi_cmp_mpi( N, &grp->P ) >= 0 )
/* we known P, N and the result are positive */
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, N, &grp->P ) );
cleanup:
return( ret );
}
/*
* Fast mod-p functions expect their argument to be in the 0..p^2 range.
*
* In order to guarantee that, we need to ensure that operands of
* mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
* bring the result back to this range.
*
* The following macros are shortcuts for doing that.
*/
/*
* Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
*/
#if defined(MBEDTLS_SELF_TEST)
#define INC_MUL_COUNT mul_count++;
#else
#define INC_MUL_COUNT
#endif
#define MOD_MUL( N ) \
do \
{ \
MBEDTLS_MPI_CHK( ecp_modp( &(N), grp ) ); \
INC_MUL_COUNT \
} while( 0 )
/*
* Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
* N->s < 0 is a very fast test, which fails only if N is 0
*/
#define MOD_SUB( N ) \
while( (N).s < 0 && mbedtls_mpi_cmp_int( &(N), 0 ) != 0 ) \
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &(N), &(N), &grp->P ) )
/*
* Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
* We known P, N and the result are positive, so sub_abs is correct, and
* a bit faster.
*/
#define MOD_ADD( N ) \
while( mbedtls_mpi_cmp_mpi( &(N), &grp->P ) >= 0 ) \
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &(N), &(N), &grp->P ) )
#if defined(ECP_SHORTWEIERSTRASS)
/*
* For curves in short Weierstrass form, we do all the internal operations in
* Jacobian coordinates.
*
* For multiplication, we'll use a comb method with coutermeasueres against
* SPA, hence timing attacks.
*/
/*
* Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
* Cost: 1N := 1I + 3M + 1S
*/
static int ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt )
{
int ret;
mbedtls_mpi Zi, ZZi;
if( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 )
return( 0 );
#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
if( mbedtls_internal_ecp_grp_capable( grp ) )
return( mbedtls_internal_ecp_normalize_jac( grp, pt ) );
#endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
/*
* X = X / Z^2 mod p
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi, &pt->Z, &grp->P ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X, &pt->X, &ZZi ) ); MOD_MUL( pt->X );
/*
* Y = Y / Z^3 mod p
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y, &pt->Y, &ZZi ) ); MOD_MUL( pt->Y );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y, &pt->Y, &Zi ) ); MOD_MUL( pt->Y );
/*
* Z = 1
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
cleanup:
mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
return( ret );
}
/*
* Normalize jacobian coordinates of an array of (pointers to) points,
* using Montgomery's trick to perform only one inversion mod P.
* (See for example Cohen's "A Course in Computational Algebraic Number
* Theory", Algorithm 10.3.4.)
*
* Warning: fails (returning an error) if one of the points is zero!
* This should never happen, see choice of w in ecp_mul_comb().
*
* Cost: 1N(t) := 1I + (6t - 3)M + 1S
*/
static int ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *T[], size_t T_size )
{
int ret;
size_t i;
mbedtls_mpi *c, u, Zi, ZZi;
if( T_size < 2 )
return( ecp_normalize_jac( grp, *T ) );
#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
if( mbedtls_internal_ecp_grp_capable( grp ) )
return( mbedtls_internal_ecp_normalize_jac_many( grp, T, T_size ) );
#endif
if( ( c = mbedtls_calloc( T_size, sizeof( mbedtls_mpi ) ) ) == NULL )
return( MBEDTLS_ERR_ECP_ALLOC_FAILED );
for( i = 0; i < T_size; i++ )
mbedtls_mpi_init( &c[i] );
mbedtls_mpi_init( &u ); mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
/*
* c[i] = Z_0 * ... * Z_i
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &c[0], &T[0]->Z ) );
for( i = 1; i < T_size; i++ )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) );
MOD_MUL( c[i] );
}
/*
* u = 1 / (Z_0 * ... * Z_n) mod P
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &u, &c[T_size-1], &grp->P ) );
for( i = T_size - 1; ; i-- )
{
/*
* Zi = 1 / Z_i mod p
* u = 1 / (Z_0 * ... * Z_i) mod P
*/
if( i == 0 ) {
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Zi, &u ) );
}
else
{
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Zi, &u, &c[i-1] ) ); MOD_MUL( Zi );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u, &u, &T[i]->Z ) ); MOD_MUL( u );
}
/*
* proceed as in normalize()
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi ) ); MOD_MUL( T[i]->Y );
/*
* Post-precessing: reclaim some memory by shrinking coordinates
* - not storing Z (always 1)
* - shrinking other coordinates, but still keeping the same number of
* limbs as P, as otherwise it will too likely be regrown too fast.
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->X, grp->P.n ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->Y, grp->P.n ) );
mbedtls_mpi_free( &T[i]->Z );
if( i == 0 )
break;
}
cleanup:
mbedtls_mpi_free( &u ); mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
for( i = 0; i < T_size; i++ )
mbedtls_mpi_free( &c[i] );
mbedtls_free( c );
return( ret );
}
/*
* Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
* "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
*/
static int ecp_safe_invert_jac( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *Q,
unsigned char inv )
{
int ret;
unsigned char nonzero;
mbedtls_mpi mQY;
mbedtls_mpi_init( &mQY );
/* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) );
nonzero = mbedtls_mpi_cmp_int( &Q->Y, 0 ) != 0;
MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) );
cleanup:
mbedtls_mpi_free( &mQY );
return( ret );
}
/*
* Point doubling R = 2 P, Jacobian coordinates
*
* Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
*
* We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
* (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
*
* Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
*
* Cost: 1D := 3M + 4S (A == 0)
* 4M + 4S (A == -3)
* 3M + 6S + 1a otherwise
*/
static int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
const mbedtls_ecp_point *P )
{
int ret;
mbedtls_mpi M, S, T, U;
#if defined(MBEDTLS_SELF_TEST)
dbl_count++;
#endif
#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
if( mbedtls_internal_ecp_grp_capable( grp ) )
return( mbedtls_internal_ecp_double_jac( grp, R, P ) );
#endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
mbedtls_mpi_init( &M ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &U );
/* Special case for A = -3 */
if( grp->A.p == NULL )
{
/* M = 3(X + Z^2)(X - Z^2) */
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->Z, &P->Z ) ); MOD_MUL( S );
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T, &P->X, &S ) ); MOD_ADD( T );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U, &P->X, &S ) ); MOD_SUB( U );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &T, &U ) ); MOD_MUL( S );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &S, 3 ) ); MOD_ADD( M );
}
else
{
/* M = 3.X^2 */
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->X, &P->X ) ); MOD_MUL( S );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &S, 3 ) ); MOD_ADD( M );
/* Optimize away for "koblitz" curves with A = 0 */
if( mbedtls_mpi_cmp_int( &grp->A, 0 ) != 0 )
{
/* M += A.Z^4 */
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->Z, &P->Z ) ); MOD_MUL( S );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &S, &S ) ); MOD_MUL( T );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &T, &grp->A ) ); MOD_MUL( S );
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M, &M, &S ) ); MOD_ADD( M );
}
}
/* S = 4.X.Y^2 */
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &P->Y, &P->Y ) ); MOD_MUL( T );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T, 1 ) ); MOD_ADD( T );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->X, &T ) ); MOD_MUL( S );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &S, 1 ) ); MOD_ADD( S );
/* U = 8.Y^4 */
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U, &T, &T ) ); MOD_MUL( U );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U, 1 ) ); MOD_ADD( U );
/* T = M^2 - 2.S */
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &M, &M ) ); MOD_MUL( T );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &T, &S ) ); MOD_SUB( T );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &T, &S ) ); MOD_SUB( T );
/* S = M(S - T) - U */
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S, &S, &T ) ); MOD_SUB( S );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &S, &M ) ); MOD_MUL( S );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S, &S, &U ) ); MOD_SUB( S );
/* U = 2.Y.Z */
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U, &P->Y, &P->Z ) ); MOD_MUL( U );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U, 1 ) ); MOD_ADD( U );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &T ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &S ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &U ) );
cleanup:
mbedtls_mpi_free( &M ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &U );
return( ret );
}
/*
* Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
*
* The coordinates of Q must be normalized (= affine),
* but those of P don't need to. R is not normalized.
*
* Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
* None of these cases can happen as intermediate step in ecp_mul_comb():
* - at each step, P, Q and R are multiples of the base point, the factor
* being less than its order, so none of them is zero;
* - Q is an odd multiple of the base point, P an even multiple,
* due to the choice of precomputed points in the modified comb method.
* So branches for these cases do not leak secret information.
*
* We accept Q->Z being unset (saving memory in tables) as meaning 1.
*
* Cost: 1A := 8M + 3S
*/
static int ecp_add_mixed( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
{
int ret;
mbedtls_mpi T1, T2, T3, T4, X, Y, Z;
#if defined(MBEDTLS_SELF_TEST)
add_count++;
#endif
#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
if( mbedtls_internal_ecp_grp_capable( grp ) )
return( mbedtls_internal_ecp_add_mixed( grp, R, P, Q ) );
#endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
/*
* Trivial cases: P == 0 or Q == 0 (case 1)
*/
if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
return( mbedtls_ecp_copy( R, Q ) );
if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 0 ) == 0 )
return( mbedtls_ecp_copy( R, P ) );
/*
* Make sure Q coordinates are normalized
*/
if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 1 ) != 0 )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 ); mbedtls_mpi_init( &T3 ); mbedtls_mpi_init( &T4 );
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1, &P->Z, &P->Z ) ); MOD_MUL( T1 );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2, &T1, &P->Z ) ); MOD_MUL( T2 );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1, &T1, &Q->X ) ); MOD_MUL( T1 );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2, &T2, &Q->Y ) ); MOD_MUL( T2 );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T1, &T1, &P->X ) ); MOD_SUB( T1 );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T2, &T2, &P->Y ) ); MOD_SUB( T2 );
/* Special cases (2) and (3) */
if( mbedtls_mpi_cmp_int( &T1, 0 ) == 0 )
{
if( mbedtls_mpi_cmp_int( &T2, 0 ) == 0 )
{
ret = ecp_double_jac( grp, R, P );
goto cleanup;
}
else
{
ret = mbedtls_ecp_set_zero( R );
goto cleanup;
}
}
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Z, &P->Z, &T1 ) ); MOD_MUL( Z );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3, &T1, &T1 ) ); MOD_MUL( T3 );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4, &T3, &T1 ) ); MOD_MUL( T4 );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3, &T3, &P->X ) ); MOD_MUL( T3 );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T3, 2 ) ); MOD_ADD( T1 );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &T2, &T2 ) ); MOD_MUL( X );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) ); MOD_SUB( X );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T4 ) ); MOD_SUB( X );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T3, &T3, &X ) ); MOD_SUB( T3 );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3, &T3, &T2 ) ); MOD_MUL( T3 );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4, &T4, &P->Y ) ); MOD_MUL( T4 );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &Y, &T3, &T4 ) ); MOD_SUB( Y );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &X ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &Y ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &Z ) );
cleanup:
mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 ); mbedtls_mpi_free( &T3 ); mbedtls_mpi_free( &T4 );
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
return( ret );
}
/*
* Randomize jacobian coordinates:
* (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
* This is sort of the reverse operation of ecp_normalize_jac().
*
* This countermeasure was first suggested in [2].
*/
static int ecp_randomize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
int ret;
mbedtls_mpi l, ll;
size_t p_size;
int count = 0;
#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
if( mbedtls_internal_ecp_grp_capable( grp ) )
return( mbedtls_internal_ecp_randomize_jac( grp, pt, f_rng, p_rng ) );
#endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
p_size = ( grp->pbits + 7 ) / 8;
mbedtls_mpi_init( &l ); mbedtls_mpi_init( &ll );
/* Generate l such that 1 < l < p */
do
{
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) );
while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
if( count++ > 10 )
return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
}
while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
/* Z = l * Z */
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Z, &pt->Z, &l ) ); MOD_MUL( pt->Z );
/* X = l^2 * X */
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll, &l, &l ) ); MOD_MUL( ll );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X, &pt->X, &ll ) ); MOD_MUL( pt->X );
/* Y = l^3 * Y */
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll, &ll, &l ) ); MOD_MUL( ll );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y, &pt->Y, &ll ) ); MOD_MUL( pt->Y );
cleanup:
mbedtls_mpi_free( &l ); mbedtls_mpi_free( &ll );
return( ret );
}
/*
* Check and define parameters used by the comb method (see below for details)
*/
#if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
#error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
#endif
/* d = ceil( n / w ) */
#define COMB_MAX_D ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2
/* number of precomputed points */
#define COMB_MAX_PRE ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) )
/*
* Compute the representation of m that will be used with our comb method.
*
* The basic comb method is described in GECC 3.44 for example. We use a
* modified version that provides resistance to SPA by avoiding zero
* digits in the representation as in [3]. We modify the method further by
* requiring that all K_i be odd, which has the small cost that our
* representation uses one more K_i, due to carries, but saves on the size of
* the precomputed table.
*
* Summary of the comb method and its modifications:
*
* - The goal is to compute m*P for some w*d-bit integer m.
*
* - The basic comb method splits m into the w-bit integers
* x[0] .. x[d-1] where x[i] consists of the bits in m whose
* index has residue i modulo d, and computes m * P as
* S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
* S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
*
* - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
* .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
* thereby successively converting it into a form where all summands
* are nonzero, at the cost of negative summands. This is the basic idea of [3].
*
* - More generally, even if x[i+1] != 0, we can first transform the sum as
* .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
* and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
* Performing and iterating this procedure for those x[i] that are even
* (keeping track of carry), we can transform the original sum into one of the form
* S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
* with all x'[i] odd. It is therefore only necessary to know S at odd indices,
* which is why we are only computing half of it in the first place in
* ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
*
* - For the sake of compactness, only the seven low-order bits of x[i]
* are used to represent its absolute value (K_i in the paper), and the msb
* of x[i] encodes the sign (s_i in the paper): it is set if and only if
* if s_i == -1;
*
* Calling conventions:
* - x is an array of size d + 1
* - w is the size, ie number of teeth, of the comb, and must be between
* 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
* - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
* (the result will be incorrect if these assumptions are not satisfied)
*/
static void ecp_comb_recode_core( unsigned char x[], size_t d,
unsigned char w, const mbedtls_mpi *m )
{
size_t i, j;
unsigned char c, cc, adjust;
memset( x, 0, d+1 );
/* First get the classical comb values (except for x_d = 0) */
for( i = 0; i < d; i++ )
for( j = 0; j < w; j++ )
x[i] |= mbedtls_mpi_get_bit( m, i + d * j ) << j;
/* Now make sure x_1 .. x_d are odd */
c = 0;
for( i = 1; i <= d; i++ )
{
/* Add carry and update it */
cc = x[i] & c;
x[i] = x[i] ^ c;
c = cc;
/* Adjust if needed, avoiding branches */
adjust = 1 - ( x[i] & 0x01 );
c |= x[i] & ( x[i-1] * adjust );
x[i] = x[i] ^ ( x[i-1] * adjust );
x[i-1] |= adjust << 7;
}
}
/*
* Precompute points for the adapted comb method
*
* Assumption: T must be able to hold 2^{w - 1} elements.
*
* Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
* sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
*
* Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
*
* Note: Even comb values (those where P would be omitted from the
* sum defining T[i] above) are not needed in our adaption
* the comb method. See ecp_comb_recode_core().
*
* This function currently works in four steps:
* (1) [dbl] Computation of intermediate T[i] for 2-power values of i
* (2) [norm_dbl] Normalization of coordinates of these T[i]
* (3) [add] Computation of all T[i]
* (4) [norm_add] Normalization of all T[i]
*
* Step 1 can be interrupted but not the others; together with the final
* coordinate normalization they are the largest steps done at once, depending
* on the window size. Here are operation counts for P-256:
*
* step (2) (3) (4)
* w = 5 142 165 208
* w = 4 136 77 160
* w = 3 130 33 136
* w = 2 124 11 124
*
* So if ECC operations are blocking for too long even with a low max_ops
* value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
* to minimize maximum blocking time.
*/
static int ecp_precompute_comb( const mbedtls_ecp_group *grp,
mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
unsigned char w, size_t d,
mbedtls_ecp_restart_ctx *rs_ctx )
{
int ret;
unsigned char i;
size_t j = 0;
const unsigned char T_size = 1U << ( w - 1 );
mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1];
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL && rs_ctx->rsm != NULL )
{
if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
goto dbl;
if( rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl )
goto norm_dbl;
if( rs_ctx->rsm->state == ecp_rsm_pre_add )
goto add;
if( rs_ctx->rsm->state == ecp_rsm_pre_norm_add )
goto norm_add;
}
#else
(void) rs_ctx;
#endif
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL && rs_ctx->rsm != NULL )
{
rs_ctx->rsm->state = ecp_rsm_pre_dbl;
/* initial state for the loop */
rs_ctx->rsm->i = 0;
}
dbl:
#endif
/*
* Set T[0] = P and
* T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
*/
MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T[0], P ) );
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
j = rs_ctx->rsm->i;
else
#endif
j = 0;
for( ; j < d * ( w - 1 ); j++ )
{
MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL );
i = 1U << ( j / d );
cur = T + i;
if( j % d == 0 )
MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur, T + ( i >> 1 ) ) );
MBEDTLS_MPI_CHK( ecp_double_jac( grp, cur, cur ) );
}
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL && rs_ctx->rsm != NULL )
rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
norm_dbl:
#endif
/*
* Normalize current elements in T. As T has holes,
* use an auxiliary array of pointers to elements in T.
*/
j = 0;
for( i = 1; i < T_size; i <<= 1 )
TT[j++] = T + i;
MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );
MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL && rs_ctx->rsm != NULL )
rs_ctx->rsm->state = ecp_rsm_pre_add;
add:
#endif
/*
* Compute the remaining ones using the minimal number of additions
* Be careful to update T[2^l] only after using it!
*/
MBEDTLS_ECP_BUDGET( ( T_size - 1 ) * MBEDTLS_ECP_OPS_ADD );
for( i = 1; i < T_size; i <<= 1 )
{
j = i;
while( j-- )
MBEDTLS_MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) );
}
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL && rs_ctx->rsm != NULL )
rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
norm_add:
#endif
/*
* Normalize final elements in T. Even though there are no holes now, we
* still need the auxiliary array for homogeneity with the previous
* call. Also, skip T[0] which is already normalised, being a copy of P.
*/
for( j = 0; j + 1 < T_size; j++ )
TT[j] = T + j + 1;
MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );
MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );
cleanup:
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
{
if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
rs_ctx->rsm->i = j;
}
#endif
return( ret );
}
/*
* Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
*
* See ecp_comb_recode_core() for background
*/
static int ecp_select_comb( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
const mbedtls_ecp_point T[], unsigned char T_size,
unsigned char i )
{
int ret;
unsigned char ii, j;
/* Ignore the "sign" bit and scale down */
ii = ( i & 0x7Fu ) >> 1;
/* Read the whole table to thwart cache-based timing attacks */
for( j = 0; j < T_size; j++ )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) );
}
/* Safely invert result if i is "negative" */
MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) );
cleanup:
return( ret );
}
/*
* Core multiplication algorithm for the (modified) comb method.
* This part is actually common with the basic comb method (GECC 3.44)
*
* Cost: d A + d D + 1 R
*/
static int ecp_mul_comb_core( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
const mbedtls_ecp_point T[], unsigned char T_size,
const unsigned char x[], size_t d,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
mbedtls_ecp_restart_ctx *rs_ctx )
{
int ret;
mbedtls_ecp_point Txi;
size_t i;
mbedtls_ecp_point_init( &Txi );
#if !defined(MBEDTLS_ECP_RESTARTABLE)
(void) rs_ctx;
#endif
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
rs_ctx->rsm->state != ecp_rsm_comb_core )
{
rs_ctx->rsm->i = 0;
rs_ctx->rsm->state = ecp_rsm_comb_core;
}
/* new 'if' instead of nested for the sake of the 'else' branch */
if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
{
/* restore current index (R already pointing to rs_ctx->rsm->R) */
i = rs_ctx->rsm->i;
}
else
#endif
{
/* Start with a non-zero point and randomize its coordinates */
i = d;
MBEDTLS_MPI_CHK( ecp_select_comb( grp, R, T, T_size, x[i] ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 1 ) );
if( f_rng != 0 )
MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );
}
while( i != 0 )
{
MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD );
--i;
MBEDTLS_MPI_CHK( ecp_double_jac( grp, R, R ) );
MBEDTLS_MPI_CHK( ecp_select_comb( grp, &Txi, T, T_size, x[i] ) );
MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) );
}
cleanup:
mbedtls_ecp_point_free( &Txi );
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
{
rs_ctx->rsm->i = i;
/* no need to save R, already pointing to rs_ctx->rsm->R */
}
#endif
return( ret );
}
/*
* Recode the scalar to get constant-time comb multiplication
*
* As the actual scalar recoding needs an odd scalar as a starting point,
* this wrapper ensures that by replacing m by N - m if necessary, and
* informs the caller that the result of multiplication will be negated.
*
* This works because we only support large prime order for Short Weierstrass
* curves, so N is always odd hence either m or N - m is.
*
* See ecp_comb_recode_core() for background.
*/
static int ecp_comb_recode_scalar( const mbedtls_ecp_group *grp,
const mbedtls_mpi *m,
unsigned char k[COMB_MAX_D + 1],
size_t d,
unsigned char w,
unsigned char *parity_trick )
{
int ret;
mbedtls_mpi M, mm;
mbedtls_mpi_init( &M );
mbedtls_mpi_init( &mm );
/* N is always odd (see above), just make extra sure */
if( mbedtls_mpi_get_bit( &grp->N, 0 ) != 1 )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
/* do we need the parity trick? */
*parity_trick = ( mbedtls_mpi_get_bit( m, 0 ) == 0 );
/* execute parity fix in constant time */
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M, m ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm, &grp->N, m ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M, &mm, *parity_trick ) );
/* actual scalar recoding */
ecp_comb_recode_core( k, d, w, &M );
cleanup:
mbedtls_mpi_free( &mm );
mbedtls_mpi_free( &M );
return( ret );
}
/*
* Perform comb multiplication (for short Weierstrass curves)
* once the auxiliary table has been pre-computed.
*
* Scalar recoding may use a parity trick that makes us compute -m * P,
* if that is the case we'll need to recover m * P at the end.
*/
static int ecp_mul_comb_after_precomp( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *R,
const mbedtls_mpi *m,
const mbedtls_ecp_point *T,
unsigned char T_size,
unsigned char w,
size_t d,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
mbedtls_ecp_restart_ctx *rs_ctx )
{
int ret;
unsigned char parity_trick;
unsigned char k[COMB_MAX_D + 1];
mbedtls_ecp_point *RR = R;
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL && rs_ctx->rsm != NULL )
{
RR = &rs_ctx->rsm->R;
if( rs_ctx->rsm->state == ecp_rsm_final_norm )
goto final_norm;
}
#endif
MBEDTLS_MPI_CHK( ecp_comb_recode_scalar( grp, m, k, d, w,
&parity_trick ) );
MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp, RR, T, T_size, k, d,
f_rng, p_rng, rs_ctx ) );
MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, RR, parity_trick ) );
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL && rs_ctx->rsm != NULL )
rs_ctx->rsm->state = ecp_rsm_final_norm;
final_norm:
#endif
MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, RR ) );
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL && rs_ctx->rsm != NULL )
MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, RR ) );
#endif
cleanup:
return( ret );
}
/*
* Pick window size based on curve size and whether we optimize for base point
*/
static unsigned char ecp_pick_window_size( const mbedtls_ecp_group *grp,
unsigned char p_eq_g )
{
unsigned char w;
/*
* Minimize the number of multiplications, that is minimize
* 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
* (see costs of the various parts, with 1S = 1M)
*/
w = grp->nbits >= 384 ? 5 : 4;
/*
* If P == G, pre-compute a bit more, since this may be re-used later.
* Just adding one avoids upping the cost of the first mul too much,
* and the memory cost too.
*/
if( p_eq_g )
w++;
/*
* Make sure w is within bounds.
* (The last test is useful only for very small curves in the test suite.)
*/
if( w > MBEDTLS_ECP_WINDOW_SIZE )
w = MBEDTLS_ECP_WINDOW_SIZE;
if( w >= grp->nbits )
w = 2;
return( w );
}
/*
* Multiplication using the comb method - for curves in short Weierstrass form
*
* This function is mainly responsible for administrative work:
* - managing the restart context if enabled
* - managing the table of precomputed points (passed between the below two
* functions): allocation, computation, ownership tranfer, freeing.
*
* It delegates the actual arithmetic work to:
* ecp_precompute_comb() and ecp_mul_comb_with_precomp()
*
* See comments on ecp_comb_recode_core() regarding the computation strategy.
*/
static int ecp_mul_comb( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
const mbedtls_mpi *m, const mbedtls_ecp_point *P,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
mbedtls_ecp_restart_ctx *rs_ctx )
{
int ret;
unsigned char w, p_eq_g, i;
size_t d;
unsigned char T_size, T_ok;
mbedtls_ecp_point *T;
ECP_RS_ENTER( rsm );
/* Is P the base point ? */
#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
p_eq_g = ( mbedtls_mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
mbedtls_mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
#else
p_eq_g = 0;
#endif
/* Pick window size and deduce related sizes */
w = ecp_pick_window_size( grp, p_eq_g );
T_size = 1U << ( w - 1 );
d = ( grp->nbits + w - 1 ) / w;
/* Pre-computed table: do we have it already for the base point? */
if( p_eq_g && grp->T != NULL )
{
/* second pointer to the same table, will be deleted on exit */
T = grp->T;
T_ok = 1;
}
else
#if defined(MBEDTLS_ECP_RESTARTABLE)
/* Pre-computed table: do we have one in progress? complete? */
if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL )
{
/* transfer ownership of T from rsm to local function */
T = rs_ctx->rsm->T;
rs_ctx->rsm->T = NULL;
rs_ctx->rsm->T_size = 0;
/* This effectively jumps to the call to mul_comb_after_precomp() */
T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
}
else
#endif
/* Allocate table if we didn't have any */
{
T = mbedtls_calloc( T_size, sizeof( mbedtls_ecp_point ) );
if( T == NULL )
{
ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
goto cleanup;
}
for( i = 0; i < T_size; i++ )
mbedtls_ecp_point_init( &T[i] );
T_ok = 0;
}
/* Compute table (or finish computing it) if not done already */
if( !T_ok )
{
MBEDTLS_MPI_CHK( ecp_precompute_comb( grp, T, P, w, d, rs_ctx ) );
if( p_eq_g )
{
/* almost transfer ownership of T to the group, but keep a copy of
* the pointer to use for calling the next function more easily */
grp->T = T;
grp->T_size = T_size;
}
}
/* Actual comb multiplication using precomputed points */
MBEDTLS_MPI_CHK( ecp_mul_comb_after_precomp( grp, R, m,
T, T_size, w, d,
f_rng, p_rng, rs_ctx ) );
cleanup:
/* does T belong to the group? */
if( T == grp->T )
T = NULL;
/* does T belong to the restart context? */
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL )
{
/* transfer ownership of T from local function to rsm */
rs_ctx->rsm->T_size = T_size;
rs_ctx->rsm->T = T;
T = NULL;
}
#endif
/* did T belong to us? then let's destroy it! */
if( T != NULL )
{
for( i = 0; i < T_size; i++ )
mbedtls_ecp_point_free( &T[i] );
mbedtls_free( T );
}
/* don't free R while in progress in case R == P */
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( ret != MBEDTLS_ERR_ECP_IN_PROGRESS )
#endif
/* prevent caller from using invalid value */
if( ret != 0 )
mbedtls_ecp_point_free( R );
ECP_RS_LEAVE( rsm );
return( ret );
}
#endif /* ECP_SHORTWEIERSTRASS */
#if defined(ECP_MONTGOMERY)
/*
* For Montgomery curves, we do all the internal arithmetic in projective
* coordinates. Import/export of points uses only the x coordinates, which is
* internaly represented as X / Z.
*
* For scalar multiplication, we'll use a Montgomery ladder.
*/
/*
* Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
* Cost: 1M + 1I
*/
static int ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P )
{
int ret;
#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
if( mbedtls_internal_ecp_grp_capable( grp ) )
return( mbedtls_internal_ecp_normalize_mxz( grp, P ) );
#endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P->Z, &P->Z, &grp->P ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &P->Z ) ); MOD_MUL( P->X );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
cleanup:
return( ret );
}
/*
* Randomize projective x/z coordinates:
* (X, Z) -> (l X, l Z) for random l
* This is sort of the reverse operation of ecp_normalize_mxz().
*
* This countermeasure was first suggested in [2].
* Cost: 2M
*/
static int ecp_randomize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
int ret;
mbedtls_mpi l;
size_t p_size;
int count = 0;
#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
if( mbedtls_internal_ecp_grp_capable( grp ) )
return( mbedtls_internal_ecp_randomize_mxz( grp, P, f_rng, p_rng );
#endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
p_size = ( grp->pbits + 7 ) / 8;
mbedtls_mpi_init( &l );
/* Generate l such that 1 < l < p */
do
{
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) );
while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
if( count++ > 10 )
return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
}
while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &l ) ); MOD_MUL( P->X );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->Z, &P->Z, &l ) ); MOD_MUL( P->Z );
cleanup:
mbedtls_mpi_free( &l );
return( ret );
}
/*
* Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
* for Montgomery curves in x/z coordinates.
*
* http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
* with
* d = X1
* P = (X2, Z2)
* Q = (X3, Z3)
* R = (X4, Z4)
* S = (X5, Z5)
* and eliminating temporary variables tO, ..., t4.
*
* Cost: 5M + 4S
*/
static int ecp_double_add_mxz( const mbedtls_ecp_group *grp,
mbedtls_ecp_point *R, mbedtls_ecp_point *S,
const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
const mbedtls_mpi *d )
{
int ret;
mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB;
#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
if( mbedtls_internal_ecp_grp_capable( grp ) )
return( mbedtls_internal_ecp_double_add_mxz( grp, R, S, P, Q, d ) );
#endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
mbedtls_mpi_init( &A ); mbedtls_mpi_init( &AA ); mbedtls_mpi_init( &B );
mbedtls_mpi_init( &BB ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &C );
mbedtls_mpi_init( &D ); mbedtls_mpi_init( &DA ); mbedtls_mpi_init( &CB );
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &A, &P->X, &P->Z ) ); MOD_ADD( A );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &AA, &A, &A ) ); MOD_MUL( AA );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &B, &P->X, &P->Z ) ); MOD_SUB( B );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &BB, &B, &B ) ); MOD_MUL( BB );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &E, &AA, &BB ) ); MOD_SUB( E );
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &C, &Q->X, &Q->Z ) ); MOD_ADD( C );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &D, &Q->X, &Q->Z ) ); MOD_SUB( D );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DA, &D, &A ) ); MOD_MUL( DA );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &CB, &C, &B ) ); MOD_MUL( CB );
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &S->X, &DA, &CB ) ); MOD_MUL( S->X );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->X, &S->X, &S->X ) ); MOD_MUL( S->X );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S->Z, &DA, &CB ) ); MOD_SUB( S->Z );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, &S->Z, &S->Z ) ); MOD_MUL( S->Z );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, d, &S->Z ) ); MOD_MUL( S->Z );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->X, &AA, &BB ) ); MOD_MUL( R->X );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &grp->A, &E ) ); MOD_MUL( R->Z );
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &R->Z, &BB, &R->Z ) ); MOD_ADD( R->Z );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &E, &R->Z ) ); MOD_MUL( R->Z );
cleanup:
mbedtls_mpi_free( &A ); mbedtls_mpi_free( &AA ); mbedtls_mpi_free( &B );
mbedtls_mpi_free( &BB ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &C );
mbedtls_mpi_free( &D ); mbedtls_mpi_free( &DA ); mbedtls_mpi_free( &CB );
return( ret );
}
/*
* Multiplication with Montgomery ladder in x/z coordinates,
* for curves in Montgomery form
*/
static int ecp_mul_mxz( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
const mbedtls_mpi *m, const mbedtls_ecp_point *P,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
int ret;
size_t i;
unsigned char b;
mbedtls_ecp_point RP;
mbedtls_mpi PX;
mbedtls_ecp_point_init( &RP ); mbedtls_mpi_init( &PX );
/* Save PX and read from P before writing to R, in case P == R */
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX, &P->X ) );
MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP, P ) );
/* Set R to zero in modified x/z coordinates */
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->X, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 0 ) );
mbedtls_mpi_free( &R->Y );
/* RP.X might be sligtly larger than P, so reduce it */
MOD_ADD( RP.X );
/* Randomize coordinates of the starting point */
if( f_rng != NULL )
MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );
/* Loop invariant: R = result so far, RP = R + P */
i = mbedtls_mpi_bitlen( m ); /* one past the (zero-based) most significant bit */
while( i-- > 0 )
{
b = mbedtls_mpi_get_bit( m, i );
/*
* if (b) R = 2R + P else R = 2R,
* which is:
* if (b) double_add( RP, R, RP, R )
* else double_add( R, RP, R, RP )
* but using safe conditional swaps to avoid leaks
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
}
MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) );
cleanup:
mbedtls_ecp_point_free( &RP ); mbedtls_mpi_free( &PX );
return( ret );
}
#endif /* ECP_MONTGOMERY */
/*
* Restartable multiplication R = m * P
*/
int mbedtls_ecp_mul_restartable( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
const mbedtls_mpi *m, const mbedtls_ecp_point *P,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
mbedtls_ecp_restart_ctx *rs_ctx )
{
int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
char is_grp_capable = 0;
#endif
ECP_VALIDATE_RET( grp != NULL );
ECP_VALIDATE_RET( R != NULL );
ECP_VALIDATE_RET( m != NULL );
ECP_VALIDATE_RET( P != NULL );
#if defined(MBEDTLS_ECP_RESTARTABLE)
/* reset ops count for this call if top-level */
if( rs_ctx != NULL && rs_ctx->depth++ == 0 )
rs_ctx->ops_done = 0;
#endif
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
#if defined(MBEDTLS_ECP_RESTARTABLE)
/* skip argument check when restarting */
if( rs_ctx == NULL || rs_ctx->rsm == NULL )
#endif
{
/* check_privkey is free */
MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_CHK );
/* Common sanity checks */
MBEDTLS_MPI_CHK( mbedtls_ecp_check_privkey( grp, m ) );
MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, P ) );
}
ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
#if defined(ECP_MONTGOMERY)
if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
MBEDTLS_MPI_CHK( ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ) );
#endif
#if defined(ECP_SHORTWEIERSTRASS)
if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
MBEDTLS_MPI_CHK( ecp_mul_comb( grp, R, m, P, f_rng, p_rng, rs_ctx ) );
#endif
cleanup:
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
if( is_grp_capable )
mbedtls_internal_ecp_free( grp );
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL )
rs_ctx->depth--;
#endif
return( ret );
}
/*
* Multiplication R = m * P
*/
int mbedtls_ecp_mul( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
const mbedtls_mpi *m, const mbedtls_ecp_point *P,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
ECP_VALIDATE_RET( grp != NULL );
ECP_VALIDATE_RET( R != NULL );
ECP_VALIDATE_RET( m != NULL );
ECP_VALIDATE_RET( P != NULL );
return( mbedtls_ecp_mul_restartable( grp, R, m, P, f_rng, p_rng, NULL ) );
}
#if defined(ECP_SHORTWEIERSTRASS)
/*
* Check that an affine point is valid as a public key,
* short weierstrass curves (SEC1 3.2.3.1)
*/
static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
{
int ret;
mbedtls_mpi YY, RHS;
/* pt coordinates must be normalized for our checks */
if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 ||
mbedtls_mpi_cmp_int( &pt->Y, 0 ) < 0 ||
mbedtls_mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
mbedtls_mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
return( MBEDTLS_ERR_ECP_INVALID_KEY );
mbedtls_mpi_init( &YY ); mbedtls_mpi_init( &RHS );
/*
* YY = Y^2
* RHS = X (X^2 + A) + B = X^3 + A X + B
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &YY, &pt->Y, &pt->Y ) ); MOD_MUL( YY );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &pt->X, &pt->X ) ); MOD_MUL( RHS );
/* Special case for A = -3 */
if( grp->A.p == NULL )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &RHS, &RHS, 3 ) ); MOD_SUB( RHS );
}
else
{
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS, &grp->A ) ); MOD_ADD( RHS );
}
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &RHS, &pt->X ) ); MOD_MUL( RHS );
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS, &grp->B ) ); MOD_ADD( RHS );
if( mbedtls_mpi_cmp_mpi( &YY, &RHS ) != 0 )
ret = MBEDTLS_ERR_ECP_INVALID_KEY;
cleanup:
mbedtls_mpi_free( &YY ); mbedtls_mpi_free( &RHS );
return( ret );
}
#endif /* ECP_SHORTWEIERSTRASS */
/*
* R = m * P with shortcuts for m == 1 and m == -1
* NOT constant-time - ONLY for short Weierstrass!
*/
static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group *grp,
mbedtls_ecp_point *R,
const mbedtls_mpi *m,
const mbedtls_ecp_point *P,
mbedtls_ecp_restart_ctx *rs_ctx )
{
int ret;
if( mbedtls_mpi_cmp_int( m, 1 ) == 0 )
{
MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
}
else if( mbedtls_mpi_cmp_int( m, -1 ) == 0 )
{
MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
if( mbedtls_mpi_cmp_int( &R->Y, 0 ) != 0 )
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R->Y, &grp->P, &R->Y ) );
}
else
{
MBEDTLS_MPI_CHK( mbedtls_ecp_mul_restartable( grp, R, m, P,
NULL, NULL, rs_ctx ) );
}
cleanup:
return( ret );
}
/*
* Restartable linear combination
* NOT constant-time
*/
int mbedtls_ecp_muladd_restartable(
mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
const mbedtls_mpi *m, const mbedtls_ecp_point *P,
const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
mbedtls_ecp_restart_ctx *rs_ctx )
{
int ret;
mbedtls_ecp_point mP;
mbedtls_ecp_point *pmP = &mP;
mbedtls_ecp_point *pR = R;
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
char is_grp_capable = 0;
#endif
ECP_VALIDATE_RET( grp != NULL );
ECP_VALIDATE_RET( R != NULL );
ECP_VALIDATE_RET( m != NULL );
ECP_VALIDATE_RET( P != NULL );
ECP_VALIDATE_RET( n != NULL );
ECP_VALIDATE_RET( Q != NULL );
if( ecp_get_type( grp ) != ECP_TYPE_SHORT_WEIERSTRASS )
return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
mbedtls_ecp_point_init( &mP );
ECP_RS_ENTER( ma );
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL && rs_ctx->ma != NULL )
{
/* redirect intermediate results to restart context */
pmP = &rs_ctx->ma->mP;
pR = &rs_ctx->ma->R;
/* jump to next operation */
if( rs_ctx->ma->state == ecp_rsma_mul2 )
goto mul2;
if( rs_ctx->ma->state == ecp_rsma_add )
goto add;
if( rs_ctx->ma->state == ecp_rsma_norm )
goto norm;
}
#endif /* MBEDTLS_ECP_RESTARTABLE */
MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pmP, m, P, rs_ctx ) );
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL && rs_ctx->ma != NULL )
rs_ctx->ma->state = ecp_rsma_mul2;
mul2:
#endif
MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pR, n, Q, rs_ctx ) );
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL && rs_ctx->ma != NULL )
rs_ctx->ma->state = ecp_rsma_add;
add:
#endif
MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_ADD );
MBEDTLS_MPI_CHK( ecp_add_mixed( grp, pR, pmP, pR ) );
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL && rs_ctx->ma != NULL )
rs_ctx->ma->state = ecp_rsma_norm;
norm:
#endif
MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, pR ) );
#if defined(MBEDTLS_ECP_RESTARTABLE)
if( rs_ctx != NULL && rs_ctx->ma != NULL )
MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, pR ) );
#endif
cleanup:
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
if( is_grp_capable )
mbedtls_internal_ecp_free( grp );
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
mbedtls_ecp_point_free( &mP );
ECP_RS_LEAVE( ma );
return( ret );
}
/*
* Linear combination
* NOT constant-time
*/
int mbedtls_ecp_muladd( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
const mbedtls_mpi *m, const mbedtls_ecp_point *P,
const mbedtls_mpi *n, const mbedtls_ecp_point *Q )
{
ECP_VALIDATE_RET( grp != NULL );
ECP_VALIDATE_RET( R != NULL );
ECP_VALIDATE_RET( m != NULL );
ECP_VALIDATE_RET( P != NULL );
ECP_VALIDATE_RET( n != NULL );
ECP_VALIDATE_RET( Q != NULL );
return( mbedtls_ecp_muladd_restartable( grp, R, m, P, n, Q, NULL ) );
}
#if defined(ECP_MONTGOMERY)
/*
* Check validity of a public key for Montgomery curves with x-only schemes
*/
static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
{
/* [Curve25519 p. 5] Just check X is the correct number of bytes */
/* Allow any public value, if it's too big then we'll just reduce it mod p
* (RFC 7748 sec. 5 para. 3). */
if( mbedtls_mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 )
return( MBEDTLS_ERR_ECP_INVALID_KEY );
return( 0 );
}
#endif /* ECP_MONTGOMERY */
/*
* Check that a point is valid as a public key
*/
int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group *grp,
const mbedtls_ecp_point *pt )
{
ECP_VALIDATE_RET( grp != NULL );
ECP_VALIDATE_RET( pt != NULL );
/* Must use affine coordinates */
if( mbedtls_mpi_cmp_int( &pt->Z, 1 ) != 0 )
return( MBEDTLS_ERR_ECP_INVALID_KEY );
#if defined(ECP_MONTGOMERY)
if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
return( ecp_check_pubkey_mx( grp, pt ) );
#endif
#if defined(ECP_SHORTWEIERSTRASS)
if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
return( ecp_check_pubkey_sw( grp, pt ) );
#endif
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
}
/*
* Check that an mbedtls_mpi is valid as a private key
*/
int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp,
const mbedtls_mpi *d )
{
ECP_VALIDATE_RET( grp != NULL );
ECP_VALIDATE_RET( d != NULL );
#if defined(ECP_MONTGOMERY)
if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
{
/* see RFC 7748 sec. 5 para. 5 */
if( mbedtls_mpi_get_bit( d, 0 ) != 0 ||
mbedtls_mpi_get_bit( d, 1 ) != 0 ||
mbedtls_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedtls_mpi_bitlen is one-based! */
return( MBEDTLS_ERR_ECP_INVALID_KEY );
/* see [Curve25519] page 5 */
if( grp->nbits == 254 && mbedtls_mpi_get_bit( d, 2 ) != 0 )
return( MBEDTLS_ERR_ECP_INVALID_KEY );
return( 0 );
}
#endif /* ECP_MONTGOMERY */
#if defined(ECP_SHORTWEIERSTRASS)
if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
{
/* see SEC1 3.2 */
if( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 )
return( MBEDTLS_ERR_ECP_INVALID_KEY );
else
return( 0 );
}
#endif /* ECP_SHORTWEIERSTRASS */
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
}
/*
* Generate a private key
*/
int mbedtls_ecp_gen_privkey( const mbedtls_ecp_group *grp,
mbedtls_mpi *d,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
size_t n_size;
ECP_VALIDATE_RET( grp != NULL );
ECP_VALIDATE_RET( d != NULL );
ECP_VALIDATE_RET( f_rng != NULL );
n_size = ( grp->nbits + 7 ) / 8;
#if defined(ECP_MONTGOMERY)
if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
{
/* [M225] page 5 */
size_t b;
do {
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
} while( mbedtls_mpi_bitlen( d ) == 0);
/* Make sure the most significant bit is nbits */
b = mbedtls_mpi_bitlen( d ) - 1; /* mbedtls_mpi_bitlen is one-based */
if( b > grp->nbits )
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, b - grp->nbits ) );
else
MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, grp->nbits, 1 ) );
/* Make sure the last two bits are unset for Curve448, three bits for
Curve25519 */
MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) );
if( grp->nbits == 254 )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) );
}
}
#endif /* ECP_MONTGOMERY */
#if defined(ECP_SHORTWEIERSTRASS)
if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
{
/* SEC1 3.2.1: Generate d such that 1 <= n < N */
int count = 0;
/*
* Match the procedure given in RFC 6979 (deterministic ECDSA):
* - use the same byte ordering;
* - keep the leftmost nbits bits of the generated octet string;
* - try until result is in the desired range.
* This also avoids any biais, which is especially important for ECDSA.
*/
do
{
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_size - grp->nbits ) );
/*
* Each try has at worst a probability 1/2 of failing (the msb has
* a probability 1/2 of being 0, and then the result will be < N),
* so after 30 tries failure probability is a most 2**(-30).
*
* For most curves, 1 try is enough with overwhelming probability,
* since N starts with a lot of 1s in binary, but some curves
* such as secp224k1 are actually very close to the worst case.
*/
if( ++count > 30 )
return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
}
while( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 );
}
#endif /* ECP_SHORTWEIERSTRASS */
cleanup:
return( ret );
}
/*
* Generate a keypair with configurable base point
*/
int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp,
const mbedtls_ecp_point *G,
mbedtls_mpi *d, mbedtls_ecp_point *Q,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
int ret;
ECP_VALIDATE_RET( grp != NULL );
ECP_VALIDATE_RET( d != NULL );
ECP_VALIDATE_RET( G != NULL );
ECP_VALIDATE_RET( Q != NULL );
ECP_VALIDATE_RET( f_rng != NULL );
MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, d, f_rng, p_rng ) );
MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, Q, d, G, f_rng, p_rng ) );
cleanup:
return( ret );
}
/*
* Generate key pair, wrapper for conventional base point
*/
int mbedtls_ecp_gen_keypair( mbedtls_ecp_group *grp,
mbedtls_mpi *d, mbedtls_ecp_point *Q,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
ECP_VALIDATE_RET( grp != NULL );
ECP_VALIDATE_RET( d != NULL );
ECP_VALIDATE_RET( Q != NULL );
ECP_VALIDATE_RET( f_rng != NULL );
return( mbedtls_ecp_gen_keypair_base( grp, &grp->G, d, Q, f_rng, p_rng ) );
}
/*
* Generate a keypair, prettier wrapper
*/
int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
int ret;
ECP_VALIDATE_RET( key != NULL );
ECP_VALIDATE_RET( f_rng != NULL );
if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 )
return( ret );
return( mbedtls_ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) );
}
/*
* Check a public-private key pair
*/
int mbedtls_ecp_check_pub_priv( const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv )
{
int ret;
mbedtls_ecp_point Q;
mbedtls_ecp_group grp;
ECP_VALIDATE_RET( pub != NULL );
ECP_VALIDATE_RET( prv != NULL );
if( pub->grp.id == MBEDTLS_ECP_DP_NONE ||
pub->grp.id != prv->grp.id ||
mbedtls_mpi_cmp_mpi( &pub->Q.X, &prv->Q.X ) ||
mbedtls_mpi_cmp_mpi( &pub->Q.Y, &prv->Q.Y ) ||
mbedtls_mpi_cmp_mpi( &pub->Q.Z, &prv->Q.Z ) )
{
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
}
mbedtls_ecp_point_init( &Q );
mbedtls_ecp_group_init( &grp );
/* mbedtls_ecp_mul() needs a non-const group... */
mbedtls_ecp_group_copy( &grp, &prv->grp );
/* Also checks d is valid */
MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &Q, &prv->d, &prv->grp.G, NULL, NULL ) );
if( mbedtls_mpi_cmp_mpi( &Q.X, &prv->Q.X ) ||
mbedtls_mpi_cmp_mpi( &Q.Y, &prv->Q.Y ) ||
mbedtls_mpi_cmp_mpi( &Q.Z, &prv->Q.Z ) )
{
ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
goto cleanup;
}
cleanup:
mbedtls_ecp_point_free( &Q );
mbedtls_ecp_group_free( &grp );
return( ret );
}
#if defined(MBEDTLS_SELF_TEST)
/*
* Checkup routine
*/
int mbedtls_ecp_self_test( int verbose )
{
int ret;
size_t i;
mbedtls_ecp_group grp;
mbedtls_ecp_point R, P;
mbedtls_mpi m;
unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
/* exponents especially adapted for secp192r1 */
const char *exponents[] =
{
"000000000000000000000000000000000000000000000001", /* one */
"FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */
"5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
"400000000000000000000000000000000000000000000000", /* one and zeros */
"7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
"555555555555555555555555555555555555555555555555", /* 101010... */
};
mbedtls_ecp_group_init( &grp );
mbedtls_ecp_point_init( &R );
mbedtls_ecp_point_init( &P );
mbedtls_mpi_init( &m );
/* Use secp192r1 if available, or any available curve */
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_SECP192R1 ) );
#else
MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, mbedtls_ecp_curve_list()->grp_id ) );
#endif
if( verbose != 0 )
mbedtls_printf( " ECP test #1 (constant op_count, base point G): " );
/* Do a dummy multiplication first to trigger precomputation */
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m, 2 ) );
MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
add_count = 0;
dbl_count = 0;
mul_count = 0;
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
{
add_c_prev = add_count;
dbl_c_prev = dbl_count;
mul_c_prev = mul_count;
add_count = 0;
dbl_count = 0;
mul_count = 0;
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
if( add_count != add_c_prev ||
dbl_count != dbl_c_prev ||
mul_count != mul_c_prev )
{
if( verbose != 0 )
mbedtls_printf( "failed (%u)\n", (unsigned int) i );
ret = 1;
goto cleanup;
}
}
if( verbose != 0 )
mbedtls_printf( "passed\n" );
if( verbose != 0 )
mbedtls_printf( " ECP test #2 (constant op_count, other point): " );
/* We computed P = 2G last time, use it */
add_count = 0;
dbl_count = 0;
mul_count = 0;
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
{
add_c_prev = add_count;
dbl_c_prev = dbl_count;
mul_c_prev = mul_count;
add_count = 0;
dbl_count = 0;
mul_count = 0;
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
if( add_count != add_c_prev ||
dbl_count != dbl_c_prev ||
mul_count != mul_c_prev )
{
if( verbose != 0 )
mbedtls_printf( "failed (%u)\n", (unsigned int) i );
ret = 1;
goto cleanup;
}
}
if( verbose != 0 )
mbedtls_printf( "passed\n" );
cleanup:
if( ret < 0 && verbose != 0 )
mbedtls_printf( "Unexpected error, return code = %08X\n", ret );
mbedtls_ecp_group_free( &grp );
mbedtls_ecp_point_free( &R );
mbedtls_ecp_point_free( &P );
mbedtls_mpi_free( &m );
if( verbose != 0 )
mbedtls_printf( "\n" );
return( ret );
}
#endif /* MBEDTLS_SELF_TEST */
#endif /* !MBEDTLS_ECP_ALT */
#endif /* MBEDTLS_ECP_C */
|