1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
|
/*
* QEMU AArch64 CPU
*
* Copyright (c) 2013 Linaro Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "cpu.h"
#ifdef CONFIG_TCG
#include "hw/core/tcg-cpu-ops.h"
#endif /* CONFIG_TCG */
#include "qemu/module.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/loader.h"
#endif
#include "sysemu/kvm.h"
#include "sysemu/hvf.h"
#include "kvm_arm.h"
#include "hvf_arm.h"
#include "qapi/visitor.h"
#include "hw/qdev-properties.h"
#include "internals.h"
static void aarch64_a35_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a35";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
/* From B2.2 AArch64 identification registers. */
cpu->midr = 0x411fd040;
cpu->revidr = 0;
cpu->ctr = 0x84448004;
cpu->isar.id_pfr0 = 0x00000131;
cpu->isar.id_pfr1 = 0x00011011;
cpu->isar.id_dfr0 = 0x03010066;
cpu->id_afr0 = 0;
cpu->isar.id_mmfr0 = 0x10201105;
cpu->isar.id_mmfr1 = 0x40000000;
cpu->isar.id_mmfr2 = 0x01260000;
cpu->isar.id_mmfr3 = 0x02102211;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00011142;
cpu->isar.id_isar5 = 0x00011121;
cpu->isar.id_aa64pfr0 = 0x00002222;
cpu->isar.id_aa64pfr1 = 0;
cpu->isar.id_aa64dfr0 = 0x10305106;
cpu->isar.id_aa64dfr1 = 0;
cpu->isar.id_aa64isar0 = 0x00011120;
cpu->isar.id_aa64isar1 = 0;
cpu->isar.id_aa64mmfr0 = 0x00101122;
cpu->isar.id_aa64mmfr1 = 0;
cpu->clidr = 0x0a200023;
cpu->dcz_blocksize = 4;
/* From B2.4 AArch64 Virtual Memory control registers */
cpu->reset_sctlr = 0x00c50838;
/* From B2.10 AArch64 performance monitor registers */
cpu->isar.reset_pmcr_el0 = 0x410a3000;
/* From B2.29 Cache ID registers */
cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
cpu->ccsidr[2] = 0x703fe03a; /* 512KB L2 cache */
/* From B3.5 VGIC Type register */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
cpu->gic_pribits = 5;
/* From C6.4 Debug ID Register */
cpu->isar.dbgdidr = 0x3516d000;
/* From C6.5 Debug Device ID Register */
cpu->isar.dbgdevid = 0x00110f13;
/* From C6.6 Debug Device ID Register 1 */
cpu->isar.dbgdevid1 = 0x2;
/* From Cortex-A35 SIMD and Floating-point Support r1p0 */
/* From 3.2 AArch32 register summary */
cpu->reset_fpsid = 0x41034043;
/* From 2.2 AArch64 register summary */
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x12111111;
cpu->isar.mvfr2 = 0x00000043;
/* These values are the same with A53/A57/A72. */
define_cortex_a72_a57_a53_cp_reginfo(cpu);
}
void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
{
/*
* If any vector lengths are explicitly enabled with sve<N> properties,
* then all other lengths are implicitly disabled. If sve-max-vq is
* specified then it is the same as explicitly enabling all lengths
* up to and including the specified maximum, which means all larger
* lengths will be implicitly disabled. If no sve<N> properties
* are enabled and sve-max-vq is not specified, then all lengths not
* explicitly disabled will be enabled. Additionally, all power-of-two
* vector lengths less than the maximum enabled length will be
* automatically enabled and all vector lengths larger than the largest
* disabled power-of-two vector length will be automatically disabled.
* Errors are generated if the user provided input that interferes with
* any of the above. Finally, if SVE is not disabled, then at least one
* vector length must be enabled.
*/
uint32_t vq_map = cpu->sve_vq.map;
uint32_t vq_init = cpu->sve_vq.init;
uint32_t vq_supported;
uint32_t vq_mask = 0;
uint32_t tmp, vq, max_vq = 0;
/*
* CPU models specify a set of supported vector lengths which are
* enabled by default. Attempting to enable any vector length not set
* in the supported bitmap results in an error. When KVM is enabled we
* fetch the supported bitmap from the host.
*/
if (kvm_enabled()) {
if (kvm_arm_sve_supported()) {
cpu->sve_vq.supported = kvm_arm_sve_get_vls(CPU(cpu));
vq_supported = cpu->sve_vq.supported;
} else {
assert(!cpu_isar_feature(aa64_sve, cpu));
vq_supported = 0;
}
} else {
vq_supported = cpu->sve_vq.supported;
}
/*
* Process explicit sve<N> properties.
* From the properties, sve_vq_map<N> implies sve_vq_init<N>.
* Check first for any sve<N> enabled.
*/
if (vq_map != 0) {
max_vq = 32 - clz32(vq_map);
vq_mask = MAKE_64BIT_MASK(0, max_vq);
if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
error_setg(errp, "cannot enable sve%d", max_vq * 128);
error_append_hint(errp, "sve%d is larger than the maximum vector "
"length, sve-max-vq=%d (%d bits)\n",
max_vq * 128, cpu->sve_max_vq,
cpu->sve_max_vq * 128);
return;
}
if (kvm_enabled()) {
/*
* For KVM we have to automatically enable all supported unitialized
* lengths, even when the smaller lengths are not all powers-of-two.
*/
vq_map |= vq_supported & ~vq_init & vq_mask;
} else {
/* Propagate enabled bits down through required powers-of-two. */
vq_map |= SVE_VQ_POW2_MAP & ~vq_init & vq_mask;
}
} else if (cpu->sve_max_vq == 0) {
/*
* No explicit bits enabled, and no implicit bits from sve-max-vq.
*/
if (!cpu_isar_feature(aa64_sve, cpu)) {
/*
* SVE is disabled and so are all vector lengths. Good.
* Disable all SVE extensions as well.
*/
cpu->isar.id_aa64zfr0 = 0;
return;
}
if (kvm_enabled()) {
/* Disabling a supported length disables all larger lengths. */
tmp = vq_init & vq_supported;
} else {
/* Disabling a power-of-two disables all larger lengths. */
tmp = vq_init & SVE_VQ_POW2_MAP;
}
vq = ctz32(tmp) + 1;
max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
vq_mask = MAKE_64BIT_MASK(0, max_vq);
vq_map = vq_supported & ~vq_init & vq_mask;
if (max_vq == 0 || vq_map == 0) {
error_setg(errp, "cannot disable sve%d", vq * 128);
error_append_hint(errp, "Disabling sve%d results in all "
"vector lengths being disabled.\n",
vq * 128);
error_append_hint(errp, "With SVE enabled, at least one "
"vector length must be enabled.\n");
return;
}
max_vq = 32 - clz32(vq_map);
vq_mask = MAKE_64BIT_MASK(0, max_vq);
}
/*
* Process the sve-max-vq property.
* Note that we know from the above that no bit above
* sve-max-vq is currently set.
*/
if (cpu->sve_max_vq != 0) {
max_vq = cpu->sve_max_vq;
vq_mask = MAKE_64BIT_MASK(0, max_vq);
if (vq_init & ~vq_map & (1 << (max_vq - 1))) {
error_setg(errp, "cannot disable sve%d", max_vq * 128);
error_append_hint(errp, "The maximum vector length must be "
"enabled, sve-max-vq=%d (%d bits)\n",
max_vq, max_vq * 128);
return;
}
/* Set all bits not explicitly set within sve-max-vq. */
vq_map |= ~vq_init & vq_mask;
}
/*
* We should know what max-vq is now. Also, as we're done
* manipulating sve-vq-map, we ensure any bits above max-vq
* are clear, just in case anybody looks.
*/
assert(max_vq != 0);
assert(vq_mask != 0);
vq_map &= vq_mask;
/* Ensure the set of lengths matches what is supported. */
tmp = vq_map ^ (vq_supported & vq_mask);
if (tmp) {
vq = 32 - clz32(tmp);
if (vq_map & (1 << (vq - 1))) {
if (cpu->sve_max_vq) {
error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq);
error_append_hint(errp, "This CPU does not support "
"the vector length %d-bits.\n", vq * 128);
error_append_hint(errp, "It may not be possible to use "
"sve-max-vq with this CPU. Try "
"using only sve<N> properties.\n");
} else {
error_setg(errp, "cannot enable sve%d", vq * 128);
if (vq_supported) {
error_append_hint(errp, "This CPU does not support "
"the vector length %d-bits.\n", vq * 128);
} else {
error_append_hint(errp, "SVE not supported by KVM "
"on this host\n");
}
}
return;
} else {
if (kvm_enabled()) {
error_setg(errp, "cannot disable sve%d", vq * 128);
error_append_hint(errp, "The KVM host requires all "
"supported vector lengths smaller "
"than %d bits to also be enabled.\n",
max_vq * 128);
return;
} else {
/* Ensure all required powers-of-two are enabled. */
tmp = SVE_VQ_POW2_MAP & vq_mask & ~vq_map;
if (tmp) {
vq = 32 - clz32(tmp);
error_setg(errp, "cannot disable sve%d", vq * 128);
error_append_hint(errp, "sve%d is required as it "
"is a power-of-two length smaller "
"than the maximum, sve%d\n",
vq * 128, max_vq * 128);
return;
}
}
}
}
/*
* Now that we validated all our vector lengths, the only question
* left to answer is if we even want SVE at all.
*/
if (!cpu_isar_feature(aa64_sve, cpu)) {
error_setg(errp, "cannot enable sve%d", max_vq * 128);
error_append_hint(errp, "SVE must be enabled to enable vector "
"lengths.\n");
error_append_hint(errp, "Add sve=on to the CPU property list.\n");
return;
}
/* From now on sve_max_vq is the actual maximum supported length. */
cpu->sve_max_vq = max_vq;
cpu->sve_vq.map = vq_map;
}
static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
uint32_t value;
/* All vector lengths are disabled when SVE is off. */
if (!cpu_isar_feature(aa64_sve, cpu)) {
value = 0;
} else {
value = cpu->sve_max_vq;
}
visit_type_uint32(v, name, &value, errp);
}
static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
uint32_t max_vq;
if (!visit_type_uint32(v, name, &max_vq, errp)) {
return;
}
if (kvm_enabled() && !kvm_arm_sve_supported()) {
error_setg(errp, "cannot set sve-max-vq");
error_append_hint(errp, "SVE not supported by KVM on this host\n");
return;
}
if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
error_setg(errp, "unsupported SVE vector length");
error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
ARM_MAX_VQ);
return;
}
cpu->sve_max_vq = max_vq;
}
/*
* Note that cpu_arm_{get,set}_vq cannot use the simpler
* object_property_add_bool interface because they make use of the
* contents of "name" to determine which bit on which to operate.
*/
static void cpu_arm_get_vq(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
ARMVQMap *vq_map = opaque;
uint32_t vq = atoi(&name[3]) / 128;
bool sve = vq_map == &cpu->sve_vq;
bool value;
/* All vector lengths are disabled when feature is off. */
if (sve
? !cpu_isar_feature(aa64_sve, cpu)
: !cpu_isar_feature(aa64_sme, cpu)) {
value = false;
} else {
value = extract32(vq_map->map, vq - 1, 1);
}
visit_type_bool(v, name, &value, errp);
}
static void cpu_arm_set_vq(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ARMVQMap *vq_map = opaque;
uint32_t vq = atoi(&name[3]) / 128;
bool value;
if (!visit_type_bool(v, name, &value, errp)) {
return;
}
vq_map->map = deposit32(vq_map->map, vq - 1, 1, value);
vq_map->init |= 1 << (vq - 1);
}
static bool cpu_arm_get_sve(Object *obj, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
return cpu_isar_feature(aa64_sve, cpu);
}
static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
uint64_t t;
if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
error_setg(errp, "'sve' feature not supported by KVM on this host");
return;
}
t = cpu->isar.id_aa64pfr0;
t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
cpu->isar.id_aa64pfr0 = t;
}
void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp)
{
uint32_t vq_map = cpu->sme_vq.map;
uint32_t vq_init = cpu->sme_vq.init;
uint32_t vq_supported = cpu->sme_vq.supported;
uint32_t vq;
if (vq_map == 0) {
if (!cpu_isar_feature(aa64_sme, cpu)) {
cpu->isar.id_aa64smfr0 = 0;
return;
}
/* TODO: KVM will require limitations via SMCR_EL2. */
vq_map = vq_supported & ~vq_init;
if (vq_map == 0) {
vq = ctz32(vq_supported) + 1;
error_setg(errp, "cannot disable sme%d", vq * 128);
error_append_hint(errp, "All SME vector lengths are disabled.\n");
error_append_hint(errp, "With SME enabled, at least one "
"vector length must be enabled.\n");
return;
}
} else {
if (!cpu_isar_feature(aa64_sme, cpu)) {
vq = 32 - clz32(vq_map);
error_setg(errp, "cannot enable sme%d", vq * 128);
error_append_hint(errp, "SME must be enabled to enable "
"vector lengths.\n");
error_append_hint(errp, "Add sme=on to the CPU property list.\n");
return;
}
/* TODO: KVM will require limitations via SMCR_EL2. */
}
cpu->sme_vq.map = vq_map;
}
static bool cpu_arm_get_sme(Object *obj, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
return cpu_isar_feature(aa64_sme, cpu);
}
static void cpu_arm_set_sme(Object *obj, bool value, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
uint64_t t;
t = cpu->isar.id_aa64pfr1;
t = FIELD_DP64(t, ID_AA64PFR1, SME, value);
cpu->isar.id_aa64pfr1 = t;
}
static bool cpu_arm_get_sme_fa64(Object *obj, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
return cpu_isar_feature(aa64_sme, cpu) &&
cpu_isar_feature(aa64_sme_fa64, cpu);
}
static void cpu_arm_set_sme_fa64(Object *obj, bool value, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
uint64_t t;
t = cpu->isar.id_aa64smfr0;
t = FIELD_DP64(t, ID_AA64SMFR0, FA64, value);
cpu->isar.id_aa64smfr0 = t;
}
#ifdef CONFIG_USER_ONLY
/* Mirror linux /proc/sys/abi/{sve,sme}_default_vector_length. */
static void cpu_arm_set_default_vec_len(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
uint32_t *ptr_default_vq = opaque;
int32_t default_len, default_vq, remainder;
if (!visit_type_int32(v, name, &default_len, errp)) {
return;
}
/* Undocumented, but the kernel allows -1 to indicate "maximum". */
if (default_len == -1) {
*ptr_default_vq = ARM_MAX_VQ;
return;
}
default_vq = default_len / 16;
remainder = default_len % 16;
/*
* Note that the 512 max comes from include/uapi/asm/sve_context.h
* and is the maximum architectural width of ZCR_ELx.LEN.
*/
if (remainder || default_vq < 1 || default_vq > 512) {
ARMCPU *cpu = ARM_CPU(obj);
const char *which =
(ptr_default_vq == &cpu->sve_default_vq ? "sve" : "sme");
error_setg(errp, "cannot set %s-default-vector-length", which);
if (remainder) {
error_append_hint(errp, "Vector length not a multiple of 16\n");
} else if (default_vq < 1) {
error_append_hint(errp, "Vector length smaller than 16\n");
} else {
error_append_hint(errp, "Vector length larger than %d\n",
512 * 16);
}
return;
}
*ptr_default_vq = default_vq;
}
static void cpu_arm_get_default_vec_len(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
uint32_t *ptr_default_vq = opaque;
int32_t value = *ptr_default_vq * 16;
visit_type_int32(v, name, &value, errp);
}
#endif
static void aarch64_add_sve_properties(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
uint32_t vq;
object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
char name[8];
sprintf(name, "sve%d", vq * 128);
object_property_add(obj, name, "bool", cpu_arm_get_vq,
cpu_arm_set_vq, NULL, &cpu->sve_vq);
}
#ifdef CONFIG_USER_ONLY
/* Mirror linux /proc/sys/abi/sve_default_vector_length. */
object_property_add(obj, "sve-default-vector-length", "int32",
cpu_arm_get_default_vec_len,
cpu_arm_set_default_vec_len, NULL,
&cpu->sve_default_vq);
#endif
}
static void aarch64_add_sme_properties(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
uint32_t vq;
object_property_add_bool(obj, "sme", cpu_arm_get_sme, cpu_arm_set_sme);
object_property_add_bool(obj, "sme_fa64", cpu_arm_get_sme_fa64,
cpu_arm_set_sme_fa64);
for (vq = 1; vq <= ARM_MAX_VQ; vq <<= 1) {
char name[8];
sprintf(name, "sme%d", vq * 128);
object_property_add(obj, name, "bool", cpu_arm_get_vq,
cpu_arm_set_vq, NULL, &cpu->sme_vq);
}
#ifdef CONFIG_USER_ONLY
/* Mirror linux /proc/sys/abi/sme_default_vector_length. */
object_property_add(obj, "sme-default-vector-length", "int32",
cpu_arm_get_default_vec_len,
cpu_arm_set_default_vec_len, NULL,
&cpu->sme_default_vq);
#endif
}
void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
{
int arch_val = 0, impdef_val = 0;
uint64_t t;
/* Exit early if PAuth is enabled, and fall through to disable it */
if ((kvm_enabled() || hvf_enabled()) && cpu->prop_pauth) {
if (!cpu_isar_feature(aa64_pauth, cpu)) {
error_setg(errp, "'pauth' feature not supported by %s on this host",
kvm_enabled() ? "KVM" : "hvf");
}
return;
}
/* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
if (cpu->prop_pauth) {
if (cpu->prop_pauth_impdef) {
impdef_val = 1;
} else {
arch_val = 1;
}
} else if (cpu->prop_pauth_impdef) {
error_setg(errp, "cannot enable pauth-impdef without pauth");
error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
}
t = cpu->isar.id_aa64isar1;
t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
cpu->isar.id_aa64isar1 = t;
}
static Property arm_cpu_pauth_property =
DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
static Property arm_cpu_pauth_impdef_property =
DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
static void aarch64_add_pauth_properties(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
/* Default to PAUTH on, with the architected algorithm on TCG. */
qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
if (kvm_enabled() || hvf_enabled()) {
/*
* Mirror PAuth support from the probed sysregs back into the
* property for KVM or hvf. Is it just a bit backward? Yes it is!
* Note that prop_pauth is true whether the host CPU supports the
* architected QARMA5 algorithm or the IMPDEF one. We don't
* provide the separate pauth-impdef property for KVM or hvf,
* only for TCG.
*/
cpu->prop_pauth = cpu_isar_feature(aa64_pauth, cpu);
} else {
qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
}
}
static Property arm_cpu_lpa2_property =
DEFINE_PROP_BOOL("lpa2", ARMCPU, prop_lpa2, true);
void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp)
{
uint64_t t;
/*
* We only install the property for tcg -cpu max; this is the
* only situation in which the cpu field can be true.
*/
if (!cpu->prop_lpa2) {
return;
}
t = cpu->isar.id_aa64mmfr0;
t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 2); /* 16k pages w/ LPA2 */
t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4, 1); /* 4k pages w/ LPA2 */
t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 3); /* 16k stage2 w/ LPA2 */
t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 3); /* 4k stage2 w/ LPA2 */
cpu->isar.id_aa64mmfr0 = t;
}
static void aarch64_a57_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a57";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
cpu->midr = 0x411fd070;
cpu->revidr = 0x00000000;
cpu->reset_fpsid = 0x41034070;
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x12111111;
cpu->isar.mvfr2 = 0x00000043;
cpu->ctr = 0x8444c004;
cpu->reset_sctlr = 0x00c50838;
cpu->isar.id_pfr0 = 0x00000131;
cpu->isar.id_pfr1 = 0x00011011;
cpu->isar.id_dfr0 = 0x03010066;
cpu->id_afr0 = 0x00000000;
cpu->isar.id_mmfr0 = 0x10101105;
cpu->isar.id_mmfr1 = 0x40000000;
cpu->isar.id_mmfr2 = 0x01260000;
cpu->isar.id_mmfr3 = 0x02102211;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00011142;
cpu->isar.id_isar5 = 0x00011121;
cpu->isar.id_isar6 = 0;
cpu->isar.id_aa64pfr0 = 0x00002222;
cpu->isar.id_aa64dfr0 = 0x10305106;
cpu->isar.id_aa64isar0 = 0x00011120;
cpu->isar.id_aa64mmfr0 = 0x00001124;
cpu->isar.dbgdidr = 0x3516d000;
cpu->isar.dbgdevid = 0x01110f13;
cpu->isar.dbgdevid1 = 0x2;
cpu->isar.reset_pmcr_el0 = 0x41013000;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
cpu->dcz_blocksize = 4; /* 64 bytes */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
cpu->gic_pribits = 5;
define_cortex_a72_a57_a53_cp_reginfo(cpu);
}
static void aarch64_a53_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a53";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
cpu->midr = 0x410fd034;
cpu->revidr = 0x00000000;
cpu->reset_fpsid = 0x41034070;
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x12111111;
cpu->isar.mvfr2 = 0x00000043;
cpu->ctr = 0x84448004; /* L1Ip = VIPT */
cpu->reset_sctlr = 0x00c50838;
cpu->isar.id_pfr0 = 0x00000131;
cpu->isar.id_pfr1 = 0x00011011;
cpu->isar.id_dfr0 = 0x03010066;
cpu->id_afr0 = 0x00000000;
cpu->isar.id_mmfr0 = 0x10101105;
cpu->isar.id_mmfr1 = 0x40000000;
cpu->isar.id_mmfr2 = 0x01260000;
cpu->isar.id_mmfr3 = 0x02102211;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00011142;
cpu->isar.id_isar5 = 0x00011121;
cpu->isar.id_isar6 = 0;
cpu->isar.id_aa64pfr0 = 0x00002222;
cpu->isar.id_aa64dfr0 = 0x10305106;
cpu->isar.id_aa64isar0 = 0x00011120;
cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
cpu->isar.dbgdidr = 0x3516d000;
cpu->isar.dbgdevid = 0x00110f13;
cpu->isar.dbgdevid1 = 0x1;
cpu->isar.reset_pmcr_el0 = 0x41033000;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
cpu->dcz_blocksize = 4; /* 64 bytes */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
cpu->gic_pribits = 5;
define_cortex_a72_a57_a53_cp_reginfo(cpu);
}
static void aarch64_a72_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a72";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->midr = 0x410fd083;
cpu->revidr = 0x00000000;
cpu->reset_fpsid = 0x41034080;
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x12111111;
cpu->isar.mvfr2 = 0x00000043;
cpu->ctr = 0x8444c004;
cpu->reset_sctlr = 0x00c50838;
cpu->isar.id_pfr0 = 0x00000131;
cpu->isar.id_pfr1 = 0x00011011;
cpu->isar.id_dfr0 = 0x03010066;
cpu->id_afr0 = 0x00000000;
cpu->isar.id_mmfr0 = 0x10201105;
cpu->isar.id_mmfr1 = 0x40000000;
cpu->isar.id_mmfr2 = 0x01260000;
cpu->isar.id_mmfr3 = 0x02102211;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00011142;
cpu->isar.id_isar5 = 0x00011121;
cpu->isar.id_aa64pfr0 = 0x00002222;
cpu->isar.id_aa64dfr0 = 0x10305106;
cpu->isar.id_aa64isar0 = 0x00011120;
cpu->isar.id_aa64mmfr0 = 0x00001124;
cpu->isar.dbgdidr = 0x3516d000;
cpu->isar.dbgdevid = 0x01110f13;
cpu->isar.dbgdevid1 = 0x2;
cpu->isar.reset_pmcr_el0 = 0x41023000;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
cpu->dcz_blocksize = 4; /* 64 bytes */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
cpu->gic_pribits = 5;
define_cortex_a72_a57_a53_cp_reginfo(cpu);
}
static void aarch64_a76_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a76";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
/* Ordered by B2.4 AArch64 registers by functional group */
cpu->clidr = 0x82000023;
cpu->ctr = 0x8444C004;
cpu->dcz_blocksize = 4;
cpu->isar.id_aa64dfr0 = 0x0000000010305408ull;
cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull;
cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
cpu->isar.id_aa64pfr0 = 0x1100000010111112ull; /* GIC filled in later */
cpu->isar.id_aa64pfr1 = 0x0000000000000010ull;
cpu->id_afr0 = 0x00000000;
cpu->isar.id_dfr0 = 0x04010088;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00010142;
cpu->isar.id_isar5 = 0x01011121;
cpu->isar.id_isar6 = 0x00000010;
cpu->isar.id_mmfr0 = 0x10201105;
cpu->isar.id_mmfr1 = 0x40000000;
cpu->isar.id_mmfr2 = 0x01260000;
cpu->isar.id_mmfr3 = 0x02122211;
cpu->isar.id_mmfr4 = 0x00021110;
cpu->isar.id_pfr0 = 0x10010131;
cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */
cpu->isar.id_pfr2 = 0x00000011;
cpu->midr = 0x414fd0b1; /* r4p1 */
cpu->revidr = 0;
/* From B2.18 CCSIDR_EL1 */
cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
cpu->ccsidr[2] = 0x707fe03a; /* 512KB L2 cache */
/* From B2.93 SCTLR_EL3 */
cpu->reset_sctlr = 0x30c50838;
/* From B4.23 ICH_VTR_EL2 */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
cpu->gic_pribits = 5;
/* From B5.1 AdvSIMD AArch64 register summary */
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x13211111;
cpu->isar.mvfr2 = 0x00000043;
/* From D5.1 AArch64 PMU register summary */
cpu->isar.reset_pmcr_el0 = 0x410b3000;
}
static void aarch64_a64fx_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,a64fx";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->midr = 0x461f0010;
cpu->revidr = 0x00000000;
cpu->ctr = 0x86668006;
cpu->reset_sctlr = 0x30000180;
cpu->isar.id_aa64pfr0 = 0x0000000101111111; /* No RAS Extensions */
cpu->isar.id_aa64pfr1 = 0x0000000000000000;
cpu->isar.id_aa64dfr0 = 0x0000000010305408;
cpu->isar.id_aa64dfr1 = 0x0000000000000000;
cpu->id_aa64afr0 = 0x0000000000000000;
cpu->id_aa64afr1 = 0x0000000000000000;
cpu->isar.id_aa64mmfr0 = 0x0000000000001122;
cpu->isar.id_aa64mmfr1 = 0x0000000011212100;
cpu->isar.id_aa64mmfr2 = 0x0000000000001011;
cpu->isar.id_aa64isar0 = 0x0000000010211120;
cpu->isar.id_aa64isar1 = 0x0000000000010001;
cpu->isar.id_aa64zfr0 = 0x0000000000000000;
cpu->clidr = 0x0000000080000023;
cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */
cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */
cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */
cpu->dcz_blocksize = 6; /* 256 bytes */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
cpu->gic_pribits = 5;
/* The A64FX supports only 128, 256 and 512 bit vector lengths */
aarch64_add_sve_properties(obj);
cpu->sve_vq.supported = (1 << 0) /* 128bit */
| (1 << 1) /* 256bit */
| (1 << 3); /* 512bit */
cpu->isar.reset_pmcr_el0 = 0x46014040;
/* TODO: Add A64FX specific HPC extension registers */
}
static void aarch64_neoverse_n1_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,neoverse-n1";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
/* Ordered by B2.4 AArch64 registers by functional group */
cpu->clidr = 0x82000023;
cpu->ctr = 0x8444c004;
cpu->dcz_blocksize = 4;
cpu->isar.id_aa64dfr0 = 0x0000000110305408ull;
cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
cpu->isar.id_aa64mmfr0 = 0x0000000000101125ull;
cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
cpu->isar.id_aa64pfr0 = 0x1100000010111112ull; /* GIC filled in later */
cpu->isar.id_aa64pfr1 = 0x0000000000000020ull;
cpu->id_afr0 = 0x00000000;
cpu->isar.id_dfr0 = 0x04010088;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00010142;
cpu->isar.id_isar5 = 0x01011121;
cpu->isar.id_isar6 = 0x00000010;
cpu->isar.id_mmfr0 = 0x10201105;
cpu->isar.id_mmfr1 = 0x40000000;
cpu->isar.id_mmfr2 = 0x01260000;
cpu->isar.id_mmfr3 = 0x02122211;
cpu->isar.id_mmfr4 = 0x00021110;
cpu->isar.id_pfr0 = 0x10010131;
cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */
cpu->isar.id_pfr2 = 0x00000011;
cpu->midr = 0x414fd0c1; /* r4p1 */
cpu->revidr = 0;
/* From B2.23 CCSIDR_EL1 */
cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
cpu->ccsidr[2] = 0x70ffe03a; /* 1MB L2 cache */
/* From B2.98 SCTLR_EL3 */
cpu->reset_sctlr = 0x30c50838;
/* From B4.23 ICH_VTR_EL2 */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
cpu->gic_pribits = 5;
/* From B5.1 AdvSIMD AArch64 register summary */
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x13211111;
cpu->isar.mvfr2 = 0x00000043;
/* From D5.1 AArch64 PMU register summary */
cpu->isar.reset_pmcr_el0 = 0x410c3000;
}
static void aarch64_host_initfn(Object *obj)
{
#if defined(CONFIG_KVM)
ARMCPU *cpu = ARM_CPU(obj);
kvm_arm_set_cpu_features_from_host(cpu);
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
aarch64_add_sve_properties(obj);
aarch64_add_pauth_properties(obj);
}
#elif defined(CONFIG_HVF)
ARMCPU *cpu = ARM_CPU(obj);
hvf_arm_set_cpu_features_from_host(cpu);
aarch64_add_pauth_properties(obj);
#else
g_assert_not_reached();
#endif
}
/* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
* otherwise, a CPU with as many features enabled as our emulation supports.
* The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
* this only needs to handle 64 bits.
*/
static void aarch64_max_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
uint64_t t;
uint32_t u;
if (kvm_enabled() || hvf_enabled()) {
/* With KVM or HVF, '-cpu max' is identical to '-cpu host' */
aarch64_host_initfn(obj);
return;
}
/* '-cpu max' for TCG: we currently do this as "A57 with extra things" */
aarch64_a57_initfn(obj);
/*
* Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
* one and try to apply errata workarounds or use impdef features we
* don't provide.
* An IMPLEMENTER field of 0 means "reserved for software use";
* ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
* to see which features are present";
* the VARIANT, PARTNUM and REVISION fields are all implementation
* defined and we choose to define PARTNUM just in case guest
* code needs to distinguish this QEMU CPU from other software
* implementations, though this shouldn't be needed.
*/
t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
cpu->midr = t;
/*
* We're going to set FEAT_S2FWB, which mandates that CLIDR_EL1.{LoUU,LoUIS}
* are zero.
*/
u = cpu->clidr;
u = FIELD_DP32(u, CLIDR_EL1, LOUIS, 0);
u = FIELD_DP32(u, CLIDR_EL1, LOUU, 0);
cpu->clidr = u;
t = cpu->isar.id_aa64isar0;
t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* FEAT_PMULL */
t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1); /* FEAT_SHA1 */
t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* FEAT_SHA512 */
t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2); /* FEAT_LSE */
t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1); /* FEAT_RDM */
t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1); /* FEAT_SHA3 */
t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1); /* FEAT_SM3 */
t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1); /* FEAT_SM4 */
t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1); /* FEAT_DotProd */
t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1); /* FEAT_FHM */
t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* FEAT_FlagM2 */
t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2); /* FEAT_TLBIRANGE */
t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1); /* FEAT_RNG */
cpu->isar.id_aa64isar0 = t;
t = cpu->isar.id_aa64isar1;
t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2); /* FEAT_DPB2 */
t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1); /* FEAT_JSCVT */
t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1); /* FEAT_FCMA */
t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* FEAT_LRCPC2 */
t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1); /* FEAT_FRINTTS */
t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1); /* FEAT_SB */
t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1); /* FEAT_SPECRES */
t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1); /* FEAT_BF16 */
t = FIELD_DP64(t, ID_AA64ISAR1, DGH, 1); /* FEAT_DGH */
t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1); /* FEAT_I8MM */
cpu->isar.id_aa64isar1 = t;
t = cpu->isar.id_aa64pfr0;
t = FIELD_DP64(t, ID_AA64PFR0, FP, 1); /* FEAT_FP16 */
t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1); /* FEAT_FP16 */
t = FIELD_DP64(t, ID_AA64PFR0, RAS, 2); /* FEAT_RASv1p1 + FEAT_DoubleFault */
t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1); /* FEAT_SEL2 */
t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1); /* FEAT_DIT */
t = FIELD_DP64(t, ID_AA64PFR0, CSV2, 2); /* FEAT_CSV2_2 */
t = FIELD_DP64(t, ID_AA64PFR0, CSV3, 1); /* FEAT_CSV3 */
cpu->isar.id_aa64pfr0 = t;
t = cpu->isar.id_aa64pfr1;
t = FIELD_DP64(t, ID_AA64PFR1, BT, 1); /* FEAT_BTI */
t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2); /* FEAT_SSBS2 */
/*
* Begin with full support for MTE. This will be downgraded to MTE=0
* during realize if the board provides no tag memory, much like
* we do for EL2 with the virtualization=on property.
*/
t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3); /* FEAT_MTE3 */
t = FIELD_DP64(t, ID_AA64PFR1, RAS_FRAC, 0); /* FEAT_RASv1p1 + FEAT_DoubleFault */
t = FIELD_DP64(t, ID_AA64PFR1, SME, 1); /* FEAT_SME */
t = FIELD_DP64(t, ID_AA64PFR1, CSV2_FRAC, 0); /* FEAT_CSV2_2 */
cpu->isar.id_aa64pfr1 = t;
t = cpu->isar.id_aa64mmfr0;
t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 6); /* FEAT_LPA: 52 bits */
t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 1); /* 16k pages supported */
t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 2); /* 16k stage2 supported */
t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN64_2, 2); /* 64k stage2 supported */
t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 2); /* 4k stage2 supported */
cpu->isar.id_aa64mmfr0 = t;
t = cpu->isar.id_aa64mmfr1;
t = FIELD_DP64(t, ID_AA64MMFR1, HAFDBS, 2); /* FEAT_HAFDBS */
t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* FEAT_VMID16 */
t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1); /* FEAT_VHE */
t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* FEAT_HPDS */
t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1); /* FEAT_LOR */
t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* FEAT_PAN2 */
t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* FEAT_XNX */
t = FIELD_DP64(t, ID_AA64MMFR1, ETS, 1); /* FEAT_ETS */
t = FIELD_DP64(t, ID_AA64MMFR1, HCX, 1); /* FEAT_HCX */
cpu->isar.id_aa64mmfr1 = t;
t = cpu->isar.id_aa64mmfr2;
t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* FEAT_TTCNP */
t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1); /* FEAT_UAO */
t = FIELD_DP64(t, ID_AA64MMFR2, IESB, 1); /* FEAT_IESB */
t = FIELD_DP64(t, ID_AA64MMFR2, VARANGE, 1); /* FEAT_LVA */
t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* FEAT_TTST */
t = FIELD_DP64(t, ID_AA64MMFR2, IDS, 1); /* FEAT_IDST */
t = FIELD_DP64(t, ID_AA64MMFR2, FWB, 1); /* FEAT_S2FWB */
t = FIELD_DP64(t, ID_AA64MMFR2, TTL, 1); /* FEAT_TTL */
t = FIELD_DP64(t, ID_AA64MMFR2, BBM, 2); /* FEAT_BBM at level 2 */
t = FIELD_DP64(t, ID_AA64MMFR2, E0PD, 1); /* FEAT_E0PD */
cpu->isar.id_aa64mmfr2 = t;
t = cpu->isar.id_aa64zfr0;
t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2); /* FEAT_SVE_PMULL128 */
t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1); /* FEAT_SVE_BitPerm */
t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1); /* FEAT_BF16 */
t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1); /* FEAT_SVE_SHA3 */
t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1); /* FEAT_SVE_SM4 */
t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1); /* FEAT_I8MM */
t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1); /* FEAT_F32MM */
t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1); /* FEAT_F64MM */
cpu->isar.id_aa64zfr0 = t;
t = cpu->isar.id_aa64dfr0;
t = FIELD_DP64(t, ID_AA64DFR0, DEBUGVER, 9); /* FEAT_Debugv8p4 */
t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 6); /* FEAT_PMUv3p5 */
cpu->isar.id_aa64dfr0 = t;
t = cpu->isar.id_aa64smfr0;
t = FIELD_DP64(t, ID_AA64SMFR0, F32F32, 1); /* FEAT_SME */
t = FIELD_DP64(t, ID_AA64SMFR0, B16F32, 1); /* FEAT_SME */
t = FIELD_DP64(t, ID_AA64SMFR0, F16F32, 1); /* FEAT_SME */
t = FIELD_DP64(t, ID_AA64SMFR0, I8I32, 0xf); /* FEAT_SME */
t = FIELD_DP64(t, ID_AA64SMFR0, F64F64, 1); /* FEAT_SME_F64F64 */
t = FIELD_DP64(t, ID_AA64SMFR0, I16I64, 0xf); /* FEAT_SME_I16I64 */
t = FIELD_DP64(t, ID_AA64SMFR0, FA64, 1); /* FEAT_SME_FA64 */
cpu->isar.id_aa64smfr0 = t;
/* Replicate the same data to the 32-bit id registers. */
aa32_max_features(cpu);
#ifdef CONFIG_USER_ONLY
/*
* For usermode -cpu max we can use a larger and more efficient DCZ
* blocksize since we don't have to follow what the hardware does.
*/
cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
cpu->dcz_blocksize = 7; /* 512 bytes */
#endif
cpu->sve_vq.supported = MAKE_64BIT_MASK(0, ARM_MAX_VQ);
cpu->sme_vq.supported = SVE_VQ_POW2_MAP;
aarch64_add_pauth_properties(obj);
aarch64_add_sve_properties(obj);
aarch64_add_sme_properties(obj);
object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
cpu_max_set_sve_max_vq, NULL, NULL);
qdev_property_add_static(DEVICE(obj), &arm_cpu_lpa2_property);
}
static const ARMCPUInfo aarch64_cpus[] = {
{ .name = "cortex-a35", .initfn = aarch64_a35_initfn },
{ .name = "cortex-a57", .initfn = aarch64_a57_initfn },
{ .name = "cortex-a53", .initfn = aarch64_a53_initfn },
{ .name = "cortex-a72", .initfn = aarch64_a72_initfn },
{ .name = "cortex-a76", .initfn = aarch64_a76_initfn },
{ .name = "a64fx", .initfn = aarch64_a64fx_initfn },
{ .name = "neoverse-n1", .initfn = aarch64_neoverse_n1_initfn },
{ .name = "max", .initfn = aarch64_max_initfn },
#if defined(CONFIG_KVM) || defined(CONFIG_HVF)
{ .name = "host", .initfn = aarch64_host_initfn },
#endif
};
static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
}
static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
/* At this time, this property is only allowed if KVM is enabled. This
* restriction allows us to avoid fixing up functionality that assumes a
* uniform execution state like do_interrupt.
*/
if (value == false) {
if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
error_setg(errp, "'aarch64' feature cannot be disabled "
"unless KVM is enabled and 32-bit EL1 "
"is supported");
return;
}
unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
} else {
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
}
}
static void aarch64_cpu_finalizefn(Object *obj)
{
}
static gchar *aarch64_gdb_arch_name(CPUState *cs)
{
return g_strdup("aarch64");
}
static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
{
CPUClass *cc = CPU_CLASS(oc);
cc->gdb_read_register = aarch64_cpu_gdb_read_register;
cc->gdb_write_register = aarch64_cpu_gdb_write_register;
cc->gdb_num_core_regs = 34;
cc->gdb_core_xml_file = "aarch64-core.xml";
cc->gdb_arch_name = aarch64_gdb_arch_name;
object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
aarch64_cpu_set_aarch64);
object_class_property_set_description(oc, "aarch64",
"Set on/off to enable/disable aarch64 "
"execution state ");
}
static void aarch64_cpu_instance_init(Object *obj)
{
ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
acc->info->initfn(obj);
arm_cpu_post_init(obj);
}
static void cpu_register_class_init(ObjectClass *oc, void *data)
{
ARMCPUClass *acc = ARM_CPU_CLASS(oc);
acc->info = data;
}
void aarch64_cpu_register(const ARMCPUInfo *info)
{
TypeInfo type_info = {
.parent = TYPE_AARCH64_CPU,
.instance_size = sizeof(ARMCPU),
.instance_init = aarch64_cpu_instance_init,
.class_size = sizeof(ARMCPUClass),
.class_init = info->class_init ?: cpu_register_class_init,
.class_data = (void *)info,
};
type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
type_register(&type_info);
g_free((void *)type_info.name);
}
static const TypeInfo aarch64_cpu_type_info = {
.name = TYPE_AARCH64_CPU,
.parent = TYPE_ARM_CPU,
.instance_size = sizeof(ARMCPU),
.instance_finalize = aarch64_cpu_finalizefn,
.abstract = true,
.class_size = sizeof(AArch64CPUClass),
.class_init = aarch64_cpu_class_init,
};
static void aarch64_cpu_register_types(void)
{
size_t i;
type_register_static(&aarch64_cpu_type_info);
for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
aarch64_cpu_register(&aarch64_cpus[i]);
}
}
type_init(aarch64_cpu_register_types)
|