1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
|
/*
* ARM helper routines
*
* Copyright (c) 2005-2007 CodeSourcery, LLC
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/main-loop.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "internals.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "cpregs.h"
#define SIGNBIT (uint32_t)0x80000000
#define SIGNBIT64 ((uint64_t)1 << 63)
int exception_target_el(CPUARMState *env)
{
int target_el = MAX(1, arm_current_el(env));
/*
* No such thing as secure EL1 if EL3 is aarch32,
* so update the target EL to EL3 in this case.
*/
if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
target_el = 3;
}
return target_el;
}
void raise_exception(CPUARMState *env, uint32_t excp,
uint32_t syndrome, uint32_t target_el)
{
CPUState *cs = env_cpu(env);
if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
/*
* Redirect NS EL1 exceptions to NS EL2. These are reported with
* their original syndrome register value, with the exception of
* SIMD/FP access traps, which are reported as uncategorized
* (see DDI0478C.a D1.10.4)
*/
target_el = 2;
if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) {
syndrome = syn_uncategorized();
}
}
assert(!excp_is_internal(excp));
cs->exception_index = excp;
env->exception.syndrome = syndrome;
env->exception.target_el = target_el;
cpu_loop_exit(cs);
}
void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome,
uint32_t target_el, uintptr_t ra)
{
CPUState *cs = env_cpu(env);
/*
* restore_state_to_opc() will set env->exception.syndrome, so
* we must restore CPU state here before setting the syndrome
* the caller passed us, and cannot use cpu_loop_exit_restore().
*/
cpu_restore_state(cs, ra);
raise_exception(env, excp, syndrome, target_el);
}
uint64_t HELPER(neon_tbl)(CPUARMState *env, uint32_t desc,
uint64_t ireg, uint64_t def)
{
uint64_t tmp, val = 0;
uint32_t maxindex = ((desc & 3) + 1) * 8;
uint32_t base_reg = desc >> 2;
uint32_t shift, index, reg;
for (shift = 0; shift < 64; shift += 8) {
index = (ireg >> shift) & 0xff;
if (index < maxindex) {
reg = base_reg + (index >> 3);
tmp = *aa32_vfp_dreg(env, reg);
tmp = ((tmp >> ((index & 7) << 3)) & 0xff) << shift;
} else {
tmp = def & (0xffull << shift);
}
val |= tmp;
}
return val;
}
void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
{
/*
* Perform the v8M stack limit check for SP updates from translated code,
* raising an exception if the limit is breached.
*/
if (newvalue < v7m_sp_limit(env)) {
/*
* Stack limit exceptions are a rare case, so rather than syncing
* PC/condbits before the call, we use raise_exception_ra() so
* that cpu_restore_state() will sort them out.
*/
raise_exception_ra(env, EXCP_STKOF, 0, 1, GETPC());
}
}
uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a + b;
if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
env->QF = 1;
return res;
}
uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a + b;
if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
env->QF = 1;
res = ~(((int32_t)a >> 31) ^ SIGNBIT);
}
return res;
}
uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a - b;
if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
env->QF = 1;
res = ~(((int32_t)a >> 31) ^ SIGNBIT);
}
return res;
}
uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a + b;
if (res < a) {
env->QF = 1;
res = ~0;
}
return res;
}
uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a - b;
if (res > a) {
env->QF = 1;
res = 0;
}
return res;
}
/* Signed saturation. */
static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
{
int32_t top;
uint32_t mask;
top = val >> shift;
mask = (1u << shift) - 1;
if (top > 0) {
env->QF = 1;
return mask;
} else if (top < -1) {
env->QF = 1;
return ~mask;
}
return val;
}
/* Unsigned saturation. */
static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
{
uint32_t max;
max = (1u << shift) - 1;
if (val < 0) {
env->QF = 1;
return 0;
} else if (val > max) {
env->QF = 1;
return max;
}
return val;
}
/* Signed saturate. */
uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
{
return do_ssat(env, x, shift);
}
/* Dual halfword signed saturate. */
uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
{
uint32_t res;
res = (uint16_t)do_ssat(env, (int16_t)x, shift);
res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
return res;
}
/* Unsigned saturate. */
uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
{
return do_usat(env, x, shift);
}
/* Dual halfword unsigned saturate. */
uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
{
uint32_t res;
res = (uint16_t)do_usat(env, (int16_t)x, shift);
res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
return res;
}
void HELPER(setend)(CPUARMState *env)
{
env->uncached_cpsr ^= CPSR_E;
arm_rebuild_hflags(env);
}
void HELPER(check_bxj_trap)(CPUARMState *env, uint32_t rm)
{
/*
* Only called if in NS EL0 or EL1 for a BXJ for a v7A CPU;
* check if HSTR.TJDBX means we need to trap to EL2.
*/
if (env->cp15.hstr_el2 & HSTR_TJDBX) {
/*
* We know the condition code check passed, so take the IMPDEF
* choice to always report CV=1 COND 0xe
*/
uint32_t syn = syn_bxjtrap(1, 0xe, rm);
raise_exception_ra(env, EXCP_HYP_TRAP, syn, 2, GETPC());
}
}
#ifndef CONFIG_USER_ONLY
/* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
* The function returns the target EL (1-3) if the instruction is to be trapped;
* otherwise it returns 0 indicating it is not trapped.
*/
static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
{
int cur_el = arm_current_el(env);
uint64_t mask;
if (arm_feature(env, ARM_FEATURE_M)) {
/* M profile cores can never trap WFI/WFE. */
return 0;
}
/* If we are currently in EL0 then we need to check if SCTLR is set up for
* WFx instructions being trapped to EL1. These trap bits don't exist in v7.
*/
if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
int target_el;
mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
/* Secure EL0 and Secure PL1 is at EL3 */
target_el = 3;
} else {
target_el = 1;
}
if (!(env->cp15.sctlr_el[target_el] & mask)) {
return target_el;
}
}
/* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
* No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
* bits will be zero indicating no trap.
*/
if (cur_el < 2) {
mask = is_wfe ? HCR_TWE : HCR_TWI;
if (arm_hcr_el2_eff(env) & mask) {
return 2;
}
}
/* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
if (cur_el < 3) {
mask = (is_wfe) ? SCR_TWE : SCR_TWI;
if (env->cp15.scr_el3 & mask) {
return 3;
}
}
return 0;
}
#endif
void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
{
#ifdef CONFIG_USER_ONLY
/*
* WFI in the user-mode emulator is technically permitted but not
* something any real-world code would do. AArch64 Linux kernels
* trap it via SCTRL_EL1.nTWI and make it an (expensive) NOP;
* AArch32 kernels don't trap it so it will delay a bit.
* For QEMU, make it NOP here, because trying to raise EXCP_HLT
* would trigger an abort.
*/
return;
#else
CPUState *cs = env_cpu(env);
int target_el = check_wfx_trap(env, false);
if (cpu_has_work(cs)) {
/* Don't bother to go into our "low power state" if
* we would just wake up immediately.
*/
return;
}
if (target_el) {
if (env->aarch64) {
env->pc -= insn_len;
} else {
env->regs[15] -= insn_len;
}
raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
target_el);
}
cs->exception_index = EXCP_HLT;
cs->halted = 1;
cpu_loop_exit(cs);
#endif
}
void HELPER(wfe)(CPUARMState *env)
{
/* This is a hint instruction that is semantically different
* from YIELD even though we currently implement it identically.
* Don't actually halt the CPU, just yield back to top
* level loop. This is not going into a "low power state"
* (ie halting until some event occurs), so we never take
* a configurable trap to a different exception level.
*/
HELPER(yield)(env);
}
void HELPER(yield)(CPUARMState *env)
{
CPUState *cs = env_cpu(env);
/* This is a non-trappable hint instruction that generally indicates
* that the guest is currently busy-looping. Yield control back to the
* top level loop so that a more deserving VCPU has a chance to run.
*/
cs->exception_index = EXCP_YIELD;
cpu_loop_exit(cs);
}
/* Raise an internal-to-QEMU exception. This is limited to only
* those EXCP values which are special cases for QEMU to interrupt
* execution and not to be used for exceptions which are passed to
* the guest (those must all have syndrome information and thus should
* use exception_with_syndrome*).
*/
void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
{
CPUState *cs = env_cpu(env);
assert(excp_is_internal(excp));
cs->exception_index = excp;
cpu_loop_exit(cs);
}
/* Raise an exception with the specified syndrome register value */
void HELPER(exception_with_syndrome_el)(CPUARMState *env, uint32_t excp,
uint32_t syndrome, uint32_t target_el)
{
raise_exception(env, excp, syndrome, target_el);
}
/*
* Raise an exception with the specified syndrome register value
* to the default target el.
*/
void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
uint32_t syndrome)
{
raise_exception(env, excp, syndrome, exception_target_el(env));
}
uint32_t HELPER(cpsr_read)(CPUARMState *env)
{
return cpsr_read(env) & ~CPSR_EXEC;
}
void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
{
cpsr_write(env, val, mask, CPSRWriteByInstr);
/* TODO: Not all cpsr bits are relevant to hflags. */
arm_rebuild_hflags(env);
}
/* Write the CPSR for a 32-bit exception return */
void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
{
uint32_t mask;
qemu_mutex_lock_iothread();
arm_call_pre_el_change_hook(env_archcpu(env));
qemu_mutex_unlock_iothread();
mask = aarch32_cpsr_valid_mask(env->features, &env_archcpu(env)->isar);
cpsr_write(env, val, mask, CPSRWriteExceptionReturn);
/* Generated code has already stored the new PC value, but
* without masking out its low bits, because which bits need
* masking depends on whether we're returning to Thumb or ARM
* state. Do the masking now.
*/
env->regs[15] &= (env->thumb ? ~1 : ~3);
arm_rebuild_hflags(env);
qemu_mutex_lock_iothread();
arm_call_el_change_hook(env_archcpu(env));
qemu_mutex_unlock_iothread();
}
/* Access to user mode registers from privileged modes. */
uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
{
uint32_t val;
if (regno == 13) {
val = env->banked_r13[BANK_USRSYS];
} else if (regno == 14) {
val = env->banked_r14[BANK_USRSYS];
} else if (regno >= 8
&& (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
val = env->usr_regs[regno - 8];
} else {
val = env->regs[regno];
}
return val;
}
void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
{
if (regno == 13) {
env->banked_r13[BANK_USRSYS] = val;
} else if (regno == 14) {
env->banked_r14[BANK_USRSYS] = val;
} else if (regno >= 8
&& (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
env->usr_regs[regno - 8] = val;
} else {
env->regs[regno] = val;
}
}
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
{
if ((env->uncached_cpsr & CPSR_M) == mode) {
env->regs[13] = val;
} else {
env->banked_r13[bank_number(mode)] = val;
}
}
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
{
if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
/* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
* Other UNPREDICTABLE and UNDEF cases were caught at translate time.
*/
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
if ((env->uncached_cpsr & CPSR_M) == mode) {
return env->regs[13];
} else {
return env->banked_r13[bank_number(mode)];
}
}
static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
uint32_t regno)
{
/* Raise an exception if the requested access is one of the UNPREDICTABLE
* cases; otherwise return. This broadly corresponds to the pseudocode
* BankedRegisterAccessValid() and SPSRAccessValid(),
* except that we have already handled some cases at translate time.
*/
int curmode = env->uncached_cpsr & CPSR_M;
if (regno == 17) {
/* ELR_Hyp: a special case because access from tgtmode is OK */
if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
goto undef;
}
return;
}
if (curmode == tgtmode) {
goto undef;
}
if (tgtmode == ARM_CPU_MODE_USR) {
switch (regno) {
case 8 ... 12:
if (curmode != ARM_CPU_MODE_FIQ) {
goto undef;
}
break;
case 13:
if (curmode == ARM_CPU_MODE_SYS) {
goto undef;
}
break;
case 14:
if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
goto undef;
}
break;
default:
break;
}
}
if (tgtmode == ARM_CPU_MODE_HYP) {
/* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */
if (curmode != ARM_CPU_MODE_MON) {
goto undef;
}
}
return;
undef:
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
uint32_t regno)
{
msr_mrs_banked_exc_checks(env, tgtmode, regno);
switch (regno) {
case 16: /* SPSRs */
env->banked_spsr[bank_number(tgtmode)] = value;
break;
case 17: /* ELR_Hyp */
env->elr_el[2] = value;
break;
case 13:
env->banked_r13[bank_number(tgtmode)] = value;
break;
case 14:
env->banked_r14[r14_bank_number(tgtmode)] = value;
break;
case 8 ... 12:
switch (tgtmode) {
case ARM_CPU_MODE_USR:
env->usr_regs[regno - 8] = value;
break;
case ARM_CPU_MODE_FIQ:
env->fiq_regs[regno - 8] = value;
break;
default:
g_assert_not_reached();
}
break;
default:
g_assert_not_reached();
}
}
uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
{
msr_mrs_banked_exc_checks(env, tgtmode, regno);
switch (regno) {
case 16: /* SPSRs */
return env->banked_spsr[bank_number(tgtmode)];
case 17: /* ELR_Hyp */
return env->elr_el[2];
case 13:
return env->banked_r13[bank_number(tgtmode)];
case 14:
return env->banked_r14[r14_bank_number(tgtmode)];
case 8 ... 12:
switch (tgtmode) {
case ARM_CPU_MODE_USR:
return env->usr_regs[regno - 8];
case ARM_CPU_MODE_FIQ:
return env->fiq_regs[regno - 8];
default:
g_assert_not_reached();
}
default:
g_assert_not_reached();
}
}
void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
uint32_t isread)
{
ARMCPU *cpu = env_archcpu(env);
const ARMCPRegInfo *ri = rip;
CPAccessResult res = CP_ACCESS_OK;
int target_el;
uint32_t excp;
if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
&& extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
res = CP_ACCESS_TRAP;
goto fail;
}
/*
* Check for an EL2 trap due to HSTR_EL2. We expect EL0 accesses
* to sysregs non accessible at EL0 to have UNDEF-ed already.
*/
if (!is_a64(env) && arm_current_el(env) < 2 && ri->cp == 15 &&
(arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
uint32_t mask = 1 << ri->crn;
if (ri->type & ARM_CP_64BIT) {
mask = 1 << ri->crm;
}
/* T4 and T14 are RES0 */
mask &= ~((1 << 4) | (1 << 14));
if (env->cp15.hstr_el2 & mask) {
res = CP_ACCESS_TRAP_EL2;
goto fail;
}
}
if (ri->accessfn) {
res = ri->accessfn(env, ri, isread);
}
if (likely(res == CP_ACCESS_OK)) {
return;
}
fail:
excp = EXCP_UDEF;
switch (res & ~CP_ACCESS_EL_MASK) {
case CP_ACCESS_TRAP:
/*
* If EL3 is AArch32 then there's no syndrome register; the cases
* where we would raise a SystemAccessTrap to AArch64 EL3 all become
* raising a Monitor trap exception. (Because there's no visible
* syndrome it doesn't matter what we pass to raise_exception().)
*/
if ((res & CP_ACCESS_EL_MASK) == 3 && !arm_el_is_aa64(env, 3)) {
excp = EXCP_MON_TRAP;
}
break;
case CP_ACCESS_TRAP_UNCATEGORIZED:
if (cpu_isar_feature(aa64_ids, cpu) && isread &&
arm_cpreg_in_idspace(ri)) {
/*
* FEAT_IDST says this should be reported as EC_SYSTEMREGISTERTRAP,
* not EC_UNCATEGORIZED
*/
break;
}
syndrome = syn_uncategorized();
break;
default:
g_assert_not_reached();
}
target_el = res & CP_ACCESS_EL_MASK;
switch (target_el) {
case 0:
target_el = exception_target_el(env);
break;
case 2:
assert(arm_current_el(env) != 3);
assert(arm_is_el2_enabled(env));
break;
case 3:
assert(arm_feature(env, ARM_FEATURE_EL3));
break;
default:
/* No "direct" traps to EL1 */
g_assert_not_reached();
}
raise_exception(env, excp, syndrome, target_el);
}
void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
{
const ARMCPRegInfo *ri = rip;
if (ri->type & ARM_CP_IO) {
qemu_mutex_lock_iothread();
ri->writefn(env, ri, value);
qemu_mutex_unlock_iothread();
} else {
ri->writefn(env, ri, value);
}
}
uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
{
const ARMCPRegInfo *ri = rip;
uint32_t res;
if (ri->type & ARM_CP_IO) {
qemu_mutex_lock_iothread();
res = ri->readfn(env, ri);
qemu_mutex_unlock_iothread();
} else {
res = ri->readfn(env, ri);
}
return res;
}
void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
{
const ARMCPRegInfo *ri = rip;
if (ri->type & ARM_CP_IO) {
qemu_mutex_lock_iothread();
ri->writefn(env, ri, value);
qemu_mutex_unlock_iothread();
} else {
ri->writefn(env, ri, value);
}
}
uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
{
const ARMCPRegInfo *ri = rip;
uint64_t res;
if (ri->type & ARM_CP_IO) {
qemu_mutex_lock_iothread();
res = ri->readfn(env, ri);
qemu_mutex_unlock_iothread();
} else {
res = ri->readfn(env, ri);
}
return res;
}
void HELPER(pre_hvc)(CPUARMState *env)
{
ARMCPU *cpu = env_archcpu(env);
int cur_el = arm_current_el(env);
/* FIXME: Use actual secure state. */
bool secure = false;
bool undef;
if (arm_is_psci_call(cpu, EXCP_HVC)) {
/* If PSCI is enabled and this looks like a valid PSCI call then
* that overrides the architecturally mandated HVC behaviour.
*/
return;
}
if (!arm_feature(env, ARM_FEATURE_EL2)) {
/* If EL2 doesn't exist, HVC always UNDEFs */
undef = true;
} else if (arm_feature(env, ARM_FEATURE_EL3)) {
/* EL3.HCE has priority over EL2.HCD. */
undef = !(env->cp15.scr_el3 & SCR_HCE);
} else {
undef = env->cp15.hcr_el2 & HCR_HCD;
}
/* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
* For ARMv8/AArch64, HVC is allowed in EL3.
* Note that we've already trapped HVC from EL0 at translation
* time.
*/
if (secure && (!is_a64(env) || cur_el == 1)) {
undef = true;
}
if (undef) {
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
}
void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
{
ARMCPU *cpu = env_archcpu(env);
int cur_el = arm_current_el(env);
bool secure = arm_is_secure(env);
bool smd_flag = env->cp15.scr_el3 & SCR_SMD;
/*
* SMC behaviour is summarized in the following table.
* This helper handles the "Trap to EL2" and "Undef insn" cases.
* The "Trap to EL3" and "PSCI call" cases are handled in the exception
* helper.
*
* -> ARM_FEATURE_EL3 and !SMD
* HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
*
* Conduit SMC, valid call Trap to EL2 PSCI Call
* Conduit SMC, inval call Trap to EL2 Trap to EL3
* Conduit not SMC Trap to EL2 Trap to EL3
*
*
* -> ARM_FEATURE_EL3 and SMD
* HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
*
* Conduit SMC, valid call Trap to EL2 PSCI Call
* Conduit SMC, inval call Trap to EL2 Undef insn
* Conduit not SMC Trap to EL2 Undef insn
*
*
* -> !ARM_FEATURE_EL3
* HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
*
* Conduit SMC, valid call Trap to EL2 PSCI Call
* Conduit SMC, inval call Trap to EL2 Undef insn
* Conduit not SMC Undef insn Undef insn
*/
/* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
* On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
* extensions, SMD only applies to NS state.
* On ARMv7 without the Virtualization extensions, the SMD bit
* doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
* so we need not special case this here.
*/
bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag
: smd_flag && !secure;
if (!arm_feature(env, ARM_FEATURE_EL3) &&
cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
/* If we have no EL3 then SMC always UNDEFs and can't be
* trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
* firmware within QEMU, and we want an EL2 guest to be able
* to forbid its EL1 from making PSCI calls into QEMU's
* "firmware" via HCR.TSC, so for these purposes treat
* PSCI-via-SMC as implying an EL3.
* This handles the very last line of the previous table.
*/
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) {
/* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
* We also want an EL2 guest to be able to forbid its EL1 from
* making PSCI calls into QEMU's "firmware" via HCR.TSC.
* This handles all the "Trap to EL2" cases of the previous table.
*/
raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
}
/* Catch the two remaining "Undef insn" cases of the previous table:
* - PSCI conduit is SMC but we don't have a valid PCSI call,
* - We don't have EL3 or SMD is set.
*/
if (!arm_is_psci_call(cpu, EXCP_SMC) &&
(smd || !arm_feature(env, ARM_FEATURE_EL3))) {
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
}
/* ??? Flag setting arithmetic is awkward because we need to do comparisons.
The only way to do that in TCG is a conditional branch, which clobbers
all our temporaries. For now implement these as helper functions. */
/* Similarly for variable shift instructions. */
uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
int shift = i & 0xff;
if (shift >= 32) {
if (shift == 32)
env->CF = x & 1;
else
env->CF = 0;
return 0;
} else if (shift != 0) {
env->CF = (x >> (32 - shift)) & 1;
return x << shift;
}
return x;
}
uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
int shift = i & 0xff;
if (shift >= 32) {
if (shift == 32)
env->CF = (x >> 31) & 1;
else
env->CF = 0;
return 0;
} else if (shift != 0) {
env->CF = (x >> (shift - 1)) & 1;
return x >> shift;
}
return x;
}
uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
int shift = i & 0xff;
if (shift >= 32) {
env->CF = (x >> 31) & 1;
return (int32_t)x >> 31;
} else if (shift != 0) {
env->CF = (x >> (shift - 1)) & 1;
return (int32_t)x >> shift;
}
return x;
}
uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
int shift1, shift;
shift1 = i & 0xff;
shift = shift1 & 0x1f;
if (shift == 0) {
if (shift1 != 0)
env->CF = (x >> 31) & 1;
return x;
} else {
env->CF = (x >> (shift - 1)) & 1;
return ((uint32_t)x >> shift) | (x << (32 - shift));
}
}
void HELPER(probe_access)(CPUARMState *env, target_ulong ptr,
uint32_t access_type, uint32_t mmu_idx,
uint32_t size)
{
uint32_t in_page = -((uint32_t)ptr | TARGET_PAGE_SIZE);
uintptr_t ra = GETPC();
if (likely(size <= in_page)) {
probe_access(env, ptr, size, access_type, mmu_idx, ra);
} else {
probe_access(env, ptr, in_page, access_type, mmu_idx, ra);
probe_access(env, ptr + in_page, size - in_page,
access_type, mmu_idx, ra);
}
}
/*
* This function corresponds to AArch64.vESBOperation().
* Note that the AArch32 version is not functionally different.
*/
void HELPER(vesb)(CPUARMState *env)
{
/*
* The EL2Enabled() check is done inside arm_hcr_el2_eff,
* and will return HCR_EL2.VSE == 0, so nothing happens.
*/
uint64_t hcr = arm_hcr_el2_eff(env);
bool enabled = !(hcr & HCR_TGE) && (hcr & HCR_AMO);
bool pending = enabled && (hcr & HCR_VSE);
bool masked = (env->daif & PSTATE_A);
/* If VSE pending and masked, defer the exception. */
if (pending && masked) {
uint32_t syndrome;
if (arm_el_is_aa64(env, 1)) {
/* Copy across IDS and ISS from VSESR. */
syndrome = env->cp15.vsesr_el2 & 0x1ffffff;
} else {
ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal };
if (extended_addresses_enabled(env)) {
syndrome = arm_fi_to_lfsc(&fi);
} else {
syndrome = arm_fi_to_sfsc(&fi);
}
/* Copy across AET and ExT from VSESR. */
syndrome |= env->cp15.vsesr_el2 & 0xd000;
}
/* Set VDISR_EL2.A along with the syndrome. */
env->cp15.vdisr_el2 = syndrome | (1u << 31);
/* Clear pending virtual SError */
env->cp15.hcr_el2 &= ~HCR_VSE;
cpu_reset_interrupt(env_cpu(env), CPU_INTERRUPT_VSERR);
}
}
|