1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
|
/*
* x86 FPU, MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI helpers
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include <math.h>
#include "cpu.h"
#include "tcg-cpu.h"
#include "exec/helper-proto.h"
#include "fpu/softfloat.h"
#include "fpu/softfloat-macros.h"
#include "helper-tcg.h"
/* float macros */
#define FT0 (env->ft0)
#define ST0 (env->fpregs[env->fpstt].d)
#define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d)
#define ST1 ST(1)
#define FPU_RC_SHIFT 10
#define FPU_RC_MASK (3 << FPU_RC_SHIFT)
#define FPU_RC_NEAR 0x000
#define FPU_RC_DOWN 0x400
#define FPU_RC_UP 0x800
#define FPU_RC_CHOP 0xc00
#define MAXTAN 9223372036854775808.0
/* the following deal with x86 long double-precision numbers */
#define MAXEXPD 0x7fff
#define EXPBIAS 16383
#define EXPD(fp) (fp.l.upper & 0x7fff)
#define SIGND(fp) ((fp.l.upper) & 0x8000)
#define MANTD(fp) (fp.l.lower)
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
#define FPUS_IE (1 << 0)
#define FPUS_DE (1 << 1)
#define FPUS_ZE (1 << 2)
#define FPUS_OE (1 << 3)
#define FPUS_UE (1 << 4)
#define FPUS_PE (1 << 5)
#define FPUS_SF (1 << 6)
#define FPUS_SE (1 << 7)
#define FPUS_B (1 << 15)
#define FPUC_EM 0x3f
#define floatx80_lg2 make_floatx80(0x3ffd, 0x9a209a84fbcff799LL)
#define floatx80_lg2_d make_floatx80(0x3ffd, 0x9a209a84fbcff798LL)
#define floatx80_l2e make_floatx80(0x3fff, 0xb8aa3b295c17f0bcLL)
#define floatx80_l2e_d make_floatx80(0x3fff, 0xb8aa3b295c17f0bbLL)
#define floatx80_l2t make_floatx80(0x4000, 0xd49a784bcd1b8afeLL)
#define floatx80_l2t_u make_floatx80(0x4000, 0xd49a784bcd1b8affLL)
#define floatx80_ln2_d make_floatx80(0x3ffe, 0xb17217f7d1cf79abLL)
#define floatx80_pi_d make_floatx80(0x4000, 0xc90fdaa22168c234LL)
static inline void fpush(CPUX86State *env)
{
env->fpstt = (env->fpstt - 1) & 7;
env->fptags[env->fpstt] = 0; /* validate stack entry */
}
static inline void fpop(CPUX86State *env)
{
env->fptags[env->fpstt] = 1; /* invalidate stack entry */
env->fpstt = (env->fpstt + 1) & 7;
}
static floatx80 do_fldt(CPUX86State *env, target_ulong ptr, uintptr_t retaddr)
{
CPU_LDoubleU temp;
temp.l.lower = cpu_ldq_data_ra(env, ptr, retaddr);
temp.l.upper = cpu_lduw_data_ra(env, ptr + 8, retaddr);
return temp.d;
}
static void do_fstt(CPUX86State *env, floatx80 f, target_ulong ptr,
uintptr_t retaddr)
{
CPU_LDoubleU temp;
temp.d = f;
cpu_stq_data_ra(env, ptr, temp.l.lower, retaddr);
cpu_stw_data_ra(env, ptr + 8, temp.l.upper, retaddr);
}
/* x87 FPU helpers */
static inline double floatx80_to_double(CPUX86State *env, floatx80 a)
{
union {
float64 f64;
double d;
} u;
u.f64 = floatx80_to_float64(a, &env->fp_status);
return u.d;
}
static inline floatx80 double_to_floatx80(CPUX86State *env, double a)
{
union {
float64 f64;
double d;
} u;
u.d = a;
return float64_to_floatx80(u.f64, &env->fp_status);
}
static void fpu_set_exception(CPUX86State *env, int mask)
{
env->fpus |= mask;
if (env->fpus & (~env->fpuc & FPUC_EM)) {
env->fpus |= FPUS_SE | FPUS_B;
}
}
static inline uint8_t save_exception_flags(CPUX86State *env)
{
uint8_t old_flags = get_float_exception_flags(&env->fp_status);
set_float_exception_flags(0, &env->fp_status);
return old_flags;
}
static void merge_exception_flags(CPUX86State *env, uint8_t old_flags)
{
uint8_t new_flags = get_float_exception_flags(&env->fp_status);
float_raise(old_flags, &env->fp_status);
fpu_set_exception(env,
((new_flags & float_flag_invalid ? FPUS_IE : 0) |
(new_flags & float_flag_divbyzero ? FPUS_ZE : 0) |
(new_flags & float_flag_overflow ? FPUS_OE : 0) |
(new_flags & float_flag_underflow ? FPUS_UE : 0) |
(new_flags & float_flag_inexact ? FPUS_PE : 0) |
(new_flags & float_flag_input_denormal ? FPUS_DE : 0)));
}
static inline floatx80 helper_fdiv(CPUX86State *env, floatx80 a, floatx80 b)
{
uint8_t old_flags = save_exception_flags(env);
floatx80 ret = floatx80_div(a, b, &env->fp_status);
merge_exception_flags(env, old_flags);
return ret;
}
static void fpu_raise_exception(CPUX86State *env, uintptr_t retaddr)
{
if (env->cr[0] & CR0_NE_MASK) {
raise_exception_ra(env, EXCP10_COPR, retaddr);
}
#if !defined(CONFIG_USER_ONLY)
else {
fpu_check_raise_ferr_irq(env);
}
#endif
}
void helper_flds_FT0(CPUX86State *env, uint32_t val)
{
uint8_t old_flags = save_exception_flags(env);
union {
float32 f;
uint32_t i;
} u;
u.i = val;
FT0 = float32_to_floatx80(u.f, &env->fp_status);
merge_exception_flags(env, old_flags);
}
void helper_fldl_FT0(CPUX86State *env, uint64_t val)
{
uint8_t old_flags = save_exception_flags(env);
union {
float64 f;
uint64_t i;
} u;
u.i = val;
FT0 = float64_to_floatx80(u.f, &env->fp_status);
merge_exception_flags(env, old_flags);
}
void helper_fildl_FT0(CPUX86State *env, int32_t val)
{
FT0 = int32_to_floatx80(val, &env->fp_status);
}
void helper_flds_ST0(CPUX86State *env, uint32_t val)
{
uint8_t old_flags = save_exception_flags(env);
int new_fpstt;
union {
float32 f;
uint32_t i;
} u;
new_fpstt = (env->fpstt - 1) & 7;
u.i = val;
env->fpregs[new_fpstt].d = float32_to_floatx80(u.f, &env->fp_status);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
merge_exception_flags(env, old_flags);
}
void helper_fldl_ST0(CPUX86State *env, uint64_t val)
{
uint8_t old_flags = save_exception_flags(env);
int new_fpstt;
union {
float64 f;
uint64_t i;
} u;
new_fpstt = (env->fpstt - 1) & 7;
u.i = val;
env->fpregs[new_fpstt].d = float64_to_floatx80(u.f, &env->fp_status);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
merge_exception_flags(env, old_flags);
}
static FloatX80RoundPrec tmp_maximise_precision(float_status *st)
{
FloatX80RoundPrec old = get_floatx80_rounding_precision(st);
set_floatx80_rounding_precision(floatx80_precision_x, st);
return old;
}
void helper_fildl_ST0(CPUX86State *env, int32_t val)
{
int new_fpstt;
FloatX80RoundPrec old = tmp_maximise_precision(&env->fp_status);
new_fpstt = (env->fpstt - 1) & 7;
env->fpregs[new_fpstt].d = int32_to_floatx80(val, &env->fp_status);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
set_floatx80_rounding_precision(old, &env->fp_status);
}
void helper_fildll_ST0(CPUX86State *env, int64_t val)
{
int new_fpstt;
FloatX80RoundPrec old = tmp_maximise_precision(&env->fp_status);
new_fpstt = (env->fpstt - 1) & 7;
env->fpregs[new_fpstt].d = int64_to_floatx80(val, &env->fp_status);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
set_floatx80_rounding_precision(old, &env->fp_status);
}
uint32_t helper_fsts_ST0(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
union {
float32 f;
uint32_t i;
} u;
u.f = floatx80_to_float32(ST0, &env->fp_status);
merge_exception_flags(env, old_flags);
return u.i;
}
uint64_t helper_fstl_ST0(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
union {
float64 f;
uint64_t i;
} u;
u.f = floatx80_to_float64(ST0, &env->fp_status);
merge_exception_flags(env, old_flags);
return u.i;
}
int32_t helper_fist_ST0(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
int32_t val;
val = floatx80_to_int32(ST0, &env->fp_status);
if (val != (int16_t)val) {
set_float_exception_flags(float_flag_invalid, &env->fp_status);
val = -32768;
}
merge_exception_flags(env, old_flags);
return val;
}
int32_t helper_fistl_ST0(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
int32_t val;
val = floatx80_to_int32(ST0, &env->fp_status);
if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) {
val = 0x80000000;
}
merge_exception_flags(env, old_flags);
return val;
}
int64_t helper_fistll_ST0(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
int64_t val;
val = floatx80_to_int64(ST0, &env->fp_status);
if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) {
val = 0x8000000000000000ULL;
}
merge_exception_flags(env, old_flags);
return val;
}
int32_t helper_fistt_ST0(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
int32_t val;
val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status);
if (val != (int16_t)val) {
set_float_exception_flags(float_flag_invalid, &env->fp_status);
val = -32768;
}
merge_exception_flags(env, old_flags);
return val;
}
int32_t helper_fisttl_ST0(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
int32_t val;
val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status);
if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) {
val = 0x80000000;
}
merge_exception_flags(env, old_flags);
return val;
}
int64_t helper_fisttll_ST0(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
int64_t val;
val = floatx80_to_int64_round_to_zero(ST0, &env->fp_status);
if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) {
val = 0x8000000000000000ULL;
}
merge_exception_flags(env, old_flags);
return val;
}
void helper_fldt_ST0(CPUX86State *env, target_ulong ptr)
{
int new_fpstt;
new_fpstt = (env->fpstt - 1) & 7;
env->fpregs[new_fpstt].d = do_fldt(env, ptr, GETPC());
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
void helper_fstt_ST0(CPUX86State *env, target_ulong ptr)
{
do_fstt(env, ST0, ptr, GETPC());
}
void helper_fpush(CPUX86State *env)
{
fpush(env);
}
void helper_fpop(CPUX86State *env)
{
fpop(env);
}
void helper_fdecstp(CPUX86State *env)
{
env->fpstt = (env->fpstt - 1) & 7;
env->fpus &= ~0x4700;
}
void helper_fincstp(CPUX86State *env)
{
env->fpstt = (env->fpstt + 1) & 7;
env->fpus &= ~0x4700;
}
/* FPU move */
void helper_ffree_STN(CPUX86State *env, int st_index)
{
env->fptags[(env->fpstt + st_index) & 7] = 1;
}
void helper_fmov_ST0_FT0(CPUX86State *env)
{
ST0 = FT0;
}
void helper_fmov_FT0_STN(CPUX86State *env, int st_index)
{
FT0 = ST(st_index);
}
void helper_fmov_ST0_STN(CPUX86State *env, int st_index)
{
ST0 = ST(st_index);
}
void helper_fmov_STN_ST0(CPUX86State *env, int st_index)
{
ST(st_index) = ST0;
}
void helper_fxchg_ST0_STN(CPUX86State *env, int st_index)
{
floatx80 tmp;
tmp = ST(st_index);
ST(st_index) = ST0;
ST0 = tmp;
}
/* FPU operations */
static const int fcom_ccval[4] = {0x0100, 0x4000, 0x0000, 0x4500};
void helper_fcom_ST0_FT0(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
FloatRelation ret;
ret = floatx80_compare(ST0, FT0, &env->fp_status);
env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1];
merge_exception_flags(env, old_flags);
}
void helper_fucom_ST0_FT0(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
FloatRelation ret;
ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status);
env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1];
merge_exception_flags(env, old_flags);
}
static const int fcomi_ccval[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
void helper_fcomi_ST0_FT0(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
int eflags;
FloatRelation ret;
ret = floatx80_compare(ST0, FT0, &env->fp_status);
eflags = cpu_cc_compute_all(env, CC_OP);
eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
CC_SRC = eflags;
merge_exception_flags(env, old_flags);
}
void helper_fucomi_ST0_FT0(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
int eflags;
FloatRelation ret;
ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status);
eflags = cpu_cc_compute_all(env, CC_OP);
eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
CC_SRC = eflags;
merge_exception_flags(env, old_flags);
}
void helper_fadd_ST0_FT0(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
ST0 = floatx80_add(ST0, FT0, &env->fp_status);
merge_exception_flags(env, old_flags);
}
void helper_fmul_ST0_FT0(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
ST0 = floatx80_mul(ST0, FT0, &env->fp_status);
merge_exception_flags(env, old_flags);
}
void helper_fsub_ST0_FT0(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
ST0 = floatx80_sub(ST0, FT0, &env->fp_status);
merge_exception_flags(env, old_flags);
}
void helper_fsubr_ST0_FT0(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
ST0 = floatx80_sub(FT0, ST0, &env->fp_status);
merge_exception_flags(env, old_flags);
}
void helper_fdiv_ST0_FT0(CPUX86State *env)
{
ST0 = helper_fdiv(env, ST0, FT0);
}
void helper_fdivr_ST0_FT0(CPUX86State *env)
{
ST0 = helper_fdiv(env, FT0, ST0);
}
/* fp operations between STN and ST0 */
void helper_fadd_STN_ST0(CPUX86State *env, int st_index)
{
uint8_t old_flags = save_exception_flags(env);
ST(st_index) = floatx80_add(ST(st_index), ST0, &env->fp_status);
merge_exception_flags(env, old_flags);
}
void helper_fmul_STN_ST0(CPUX86State *env, int st_index)
{
uint8_t old_flags = save_exception_flags(env);
ST(st_index) = floatx80_mul(ST(st_index), ST0, &env->fp_status);
merge_exception_flags(env, old_flags);
}
void helper_fsub_STN_ST0(CPUX86State *env, int st_index)
{
uint8_t old_flags = save_exception_flags(env);
ST(st_index) = floatx80_sub(ST(st_index), ST0, &env->fp_status);
merge_exception_flags(env, old_flags);
}
void helper_fsubr_STN_ST0(CPUX86State *env, int st_index)
{
uint8_t old_flags = save_exception_flags(env);
ST(st_index) = floatx80_sub(ST0, ST(st_index), &env->fp_status);
merge_exception_flags(env, old_flags);
}
void helper_fdiv_STN_ST0(CPUX86State *env, int st_index)
{
floatx80 *p;
p = &ST(st_index);
*p = helper_fdiv(env, *p, ST0);
}
void helper_fdivr_STN_ST0(CPUX86State *env, int st_index)
{
floatx80 *p;
p = &ST(st_index);
*p = helper_fdiv(env, ST0, *p);
}
/* misc FPU operations */
void helper_fchs_ST0(CPUX86State *env)
{
ST0 = floatx80_chs(ST0);
}
void helper_fabs_ST0(CPUX86State *env)
{
ST0 = floatx80_abs(ST0);
}
void helper_fld1_ST0(CPUX86State *env)
{
ST0 = floatx80_one;
}
void helper_fldl2t_ST0(CPUX86State *env)
{
switch (env->fpuc & FPU_RC_MASK) {
case FPU_RC_UP:
ST0 = floatx80_l2t_u;
break;
default:
ST0 = floatx80_l2t;
break;
}
}
void helper_fldl2e_ST0(CPUX86State *env)
{
switch (env->fpuc & FPU_RC_MASK) {
case FPU_RC_DOWN:
case FPU_RC_CHOP:
ST0 = floatx80_l2e_d;
break;
default:
ST0 = floatx80_l2e;
break;
}
}
void helper_fldpi_ST0(CPUX86State *env)
{
switch (env->fpuc & FPU_RC_MASK) {
case FPU_RC_DOWN:
case FPU_RC_CHOP:
ST0 = floatx80_pi_d;
break;
default:
ST0 = floatx80_pi;
break;
}
}
void helper_fldlg2_ST0(CPUX86State *env)
{
switch (env->fpuc & FPU_RC_MASK) {
case FPU_RC_DOWN:
case FPU_RC_CHOP:
ST0 = floatx80_lg2_d;
break;
default:
ST0 = floatx80_lg2;
break;
}
}
void helper_fldln2_ST0(CPUX86State *env)
{
switch (env->fpuc & FPU_RC_MASK) {
case FPU_RC_DOWN:
case FPU_RC_CHOP:
ST0 = floatx80_ln2_d;
break;
default:
ST0 = floatx80_ln2;
break;
}
}
void helper_fldz_ST0(CPUX86State *env)
{
ST0 = floatx80_zero;
}
void helper_fldz_FT0(CPUX86State *env)
{
FT0 = floatx80_zero;
}
uint32_t helper_fnstsw(CPUX86State *env)
{
return (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
}
uint32_t helper_fnstcw(CPUX86State *env)
{
return env->fpuc;
}
static void set_x86_rounding_mode(unsigned mode, float_status *status)
{
static FloatRoundMode x86_round_mode[4] = {
float_round_nearest_even,
float_round_down,
float_round_up,
float_round_to_zero
};
assert(mode < ARRAY_SIZE(x86_round_mode));
set_float_rounding_mode(x86_round_mode[mode], status);
}
void update_fp_status(CPUX86State *env)
{
int rnd_mode;
FloatX80RoundPrec rnd_prec;
/* set rounding mode */
rnd_mode = (env->fpuc & FPU_RC_MASK) >> FPU_RC_SHIFT;
set_x86_rounding_mode(rnd_mode, &env->fp_status);
switch ((env->fpuc >> 8) & 3) {
case 0:
rnd_prec = floatx80_precision_s;
break;
case 2:
rnd_prec = floatx80_precision_d;
break;
case 3:
default:
rnd_prec = floatx80_precision_x;
break;
}
set_floatx80_rounding_precision(rnd_prec, &env->fp_status);
}
void helper_fldcw(CPUX86State *env, uint32_t val)
{
cpu_set_fpuc(env, val);
}
void helper_fclex(CPUX86State *env)
{
env->fpus &= 0x7f00;
}
void helper_fwait(CPUX86State *env)
{
if (env->fpus & FPUS_SE) {
fpu_raise_exception(env, GETPC());
}
}
static void do_fninit(CPUX86State *env)
{
env->fpus = 0;
env->fpstt = 0;
env->fpcs = 0;
env->fpds = 0;
env->fpip = 0;
env->fpdp = 0;
cpu_set_fpuc(env, 0x37f);
env->fptags[0] = 1;
env->fptags[1] = 1;
env->fptags[2] = 1;
env->fptags[3] = 1;
env->fptags[4] = 1;
env->fptags[5] = 1;
env->fptags[6] = 1;
env->fptags[7] = 1;
}
void helper_fninit(CPUX86State *env)
{
do_fninit(env);
}
/* BCD ops */
void helper_fbld_ST0(CPUX86State *env, target_ulong ptr)
{
floatx80 tmp;
uint64_t val;
unsigned int v;
int i;
val = 0;
for (i = 8; i >= 0; i--) {
v = cpu_ldub_data_ra(env, ptr + i, GETPC());
val = (val * 100) + ((v >> 4) * 10) + (v & 0xf);
}
tmp = int64_to_floatx80(val, &env->fp_status);
if (cpu_ldub_data_ra(env, ptr + 9, GETPC()) & 0x80) {
tmp = floatx80_chs(tmp);
}
fpush(env);
ST0 = tmp;
}
void helper_fbst_ST0(CPUX86State *env, target_ulong ptr)
{
uint8_t old_flags = save_exception_flags(env);
int v;
target_ulong mem_ref, mem_end;
int64_t val;
CPU_LDoubleU temp;
temp.d = ST0;
val = floatx80_to_int64(ST0, &env->fp_status);
mem_ref = ptr;
if (val >= 1000000000000000000LL || val <= -1000000000000000000LL) {
set_float_exception_flags(float_flag_invalid, &env->fp_status);
while (mem_ref < ptr + 7) {
cpu_stb_data_ra(env, mem_ref++, 0, GETPC());
}
cpu_stb_data_ra(env, mem_ref++, 0xc0, GETPC());
cpu_stb_data_ra(env, mem_ref++, 0xff, GETPC());
cpu_stb_data_ra(env, mem_ref++, 0xff, GETPC());
merge_exception_flags(env, old_flags);
return;
}
mem_end = mem_ref + 9;
if (SIGND(temp)) {
cpu_stb_data_ra(env, mem_end, 0x80, GETPC());
val = -val;
} else {
cpu_stb_data_ra(env, mem_end, 0x00, GETPC());
}
while (mem_ref < mem_end) {
if (val == 0) {
break;
}
v = val % 100;
val = val / 100;
v = ((v / 10) << 4) | (v % 10);
cpu_stb_data_ra(env, mem_ref++, v, GETPC());
}
while (mem_ref < mem_end) {
cpu_stb_data_ra(env, mem_ref++, 0, GETPC());
}
merge_exception_flags(env, old_flags);
}
/* 128-bit significand of log(2). */
#define ln2_sig_high 0xb17217f7d1cf79abULL
#define ln2_sig_low 0xc9e3b39803f2f6afULL
/*
* Polynomial coefficients for an approximation to (2^x - 1) / x, on
* the interval [-1/64, 1/64].
*/
#define f2xm1_coeff_0 make_floatx80(0x3ffe, 0xb17217f7d1cf79acULL)
#define f2xm1_coeff_0_low make_floatx80(0xbfbc, 0xd87edabf495b3762ULL)
#define f2xm1_coeff_1 make_floatx80(0x3ffc, 0xf5fdeffc162c7543ULL)
#define f2xm1_coeff_2 make_floatx80(0x3ffa, 0xe35846b82505fcc7ULL)
#define f2xm1_coeff_3 make_floatx80(0x3ff8, 0x9d955b7dd273b899ULL)
#define f2xm1_coeff_4 make_floatx80(0x3ff5, 0xaec3ff3c4ef4ac0cULL)
#define f2xm1_coeff_5 make_floatx80(0x3ff2, 0xa184897c3a7f0de9ULL)
#define f2xm1_coeff_6 make_floatx80(0x3fee, 0xffe634d0ec30d504ULL)
#define f2xm1_coeff_7 make_floatx80(0x3feb, 0xb160111d2db515e4ULL)
struct f2xm1_data {
/*
* A value very close to a multiple of 1/32, such that 2^t and 2^t - 1
* are very close to exact floatx80 values.
*/
floatx80 t;
/* The value of 2^t. */
floatx80 exp2;
/* The value of 2^t - 1. */
floatx80 exp2m1;
};
static const struct f2xm1_data f2xm1_table[65] = {
{ make_floatx80_init(0xbfff, 0x8000000000000000ULL),
make_floatx80_init(0x3ffe, 0x8000000000000000ULL),
make_floatx80_init(0xbffe, 0x8000000000000000ULL) },
{ make_floatx80_init(0xbffe, 0xf800000000002e7eULL),
make_floatx80_init(0x3ffe, 0x82cd8698ac2b9160ULL),
make_floatx80_init(0xbffd, 0xfa64f2cea7a8dd40ULL) },
{ make_floatx80_init(0xbffe, 0xefffffffffffe960ULL),
make_floatx80_init(0x3ffe, 0x85aac367cc488345ULL),
make_floatx80_init(0xbffd, 0xf4aa7930676ef976ULL) },
{ make_floatx80_init(0xbffe, 0xe800000000006f10ULL),
make_floatx80_init(0x3ffe, 0x88980e8092da5c14ULL),
make_floatx80_init(0xbffd, 0xeecfe2feda4b47d8ULL) },
{ make_floatx80_init(0xbffe, 0xe000000000008a45ULL),
make_floatx80_init(0x3ffe, 0x8b95c1e3ea8ba2a5ULL),
make_floatx80_init(0xbffd, 0xe8d47c382ae8bab6ULL) },
{ make_floatx80_init(0xbffe, 0xd7ffffffffff8a9eULL),
make_floatx80_init(0x3ffe, 0x8ea4398b45cd8116ULL),
make_floatx80_init(0xbffd, 0xe2b78ce97464fdd4ULL) },
{ make_floatx80_init(0xbffe, 0xd0000000000019a0ULL),
make_floatx80_init(0x3ffe, 0x91c3d373ab11b919ULL),
make_floatx80_init(0xbffd, 0xdc785918a9dc8dceULL) },
{ make_floatx80_init(0xbffe, 0xc7ffffffffff14dfULL),
make_floatx80_init(0x3ffe, 0x94f4efa8fef76836ULL),
make_floatx80_init(0xbffd, 0xd61620ae02112f94ULL) },
{ make_floatx80_init(0xbffe, 0xc000000000006530ULL),
make_floatx80_init(0x3ffe, 0x9837f0518db87fbbULL),
make_floatx80_init(0xbffd, 0xcf901f5ce48f008aULL) },
{ make_floatx80_init(0xbffe, 0xb7ffffffffff1723ULL),
make_floatx80_init(0x3ffe, 0x9b8d39b9d54eb74cULL),
make_floatx80_init(0xbffd, 0xc8e58c8c55629168ULL) },
{ make_floatx80_init(0xbffe, 0xb00000000000b5e1ULL),
make_floatx80_init(0x3ffe, 0x9ef5326091a0c366ULL),
make_floatx80_init(0xbffd, 0xc2159b3edcbe7934ULL) },
{ make_floatx80_init(0xbffe, 0xa800000000006f8aULL),
make_floatx80_init(0x3ffe, 0xa27043030c49370aULL),
make_floatx80_init(0xbffd, 0xbb1f79f9e76d91ecULL) },
{ make_floatx80_init(0xbffe, 0x9fffffffffff816aULL),
make_floatx80_init(0x3ffe, 0xa5fed6a9b15171cfULL),
make_floatx80_init(0xbffd, 0xb40252ac9d5d1c62ULL) },
{ make_floatx80_init(0xbffe, 0x97ffffffffffb621ULL),
make_floatx80_init(0x3ffe, 0xa9a15ab4ea7c30e6ULL),
make_floatx80_init(0xbffd, 0xacbd4a962b079e34ULL) },
{ make_floatx80_init(0xbffe, 0x8fffffffffff162bULL),
make_floatx80_init(0x3ffe, 0xad583eea42a1b886ULL),
make_floatx80_init(0xbffd, 0xa54f822b7abc8ef4ULL) },
{ make_floatx80_init(0xbffe, 0x87ffffffffff4d34ULL),
make_floatx80_init(0x3ffe, 0xb123f581d2ac7b51ULL),
make_floatx80_init(0xbffd, 0x9db814fc5aa7095eULL) },
{ make_floatx80_init(0xbffe, 0x800000000000227dULL),
make_floatx80_init(0x3ffe, 0xb504f333f9de539dULL),
make_floatx80_init(0xbffd, 0x95f619980c4358c6ULL) },
{ make_floatx80_init(0xbffd, 0xefffffffffff3978ULL),
make_floatx80_init(0x3ffe, 0xb8fbaf4762fbd0a1ULL),
make_floatx80_init(0xbffd, 0x8e08a1713a085ebeULL) },
{ make_floatx80_init(0xbffd, 0xe00000000000df81ULL),
make_floatx80_init(0x3ffe, 0xbd08a39f580bfd8cULL),
make_floatx80_init(0xbffd, 0x85eeb8c14fe804e8ULL) },
{ make_floatx80_init(0xbffd, 0xd00000000000bccfULL),
make_floatx80_init(0x3ffe, 0xc12c4cca667062f6ULL),
make_floatx80_init(0xbffc, 0xfb4eccd6663e7428ULL) },
{ make_floatx80_init(0xbffd, 0xc00000000000eff0ULL),
make_floatx80_init(0x3ffe, 0xc5672a1155069abeULL),
make_floatx80_init(0xbffc, 0xea6357baabe59508ULL) },
{ make_floatx80_init(0xbffd, 0xb000000000000fe6ULL),
make_floatx80_init(0x3ffe, 0xc9b9bd866e2f234bULL),
make_floatx80_init(0xbffc, 0xd91909e6474372d4ULL) },
{ make_floatx80_init(0xbffd, 0x9fffffffffff2172ULL),
make_floatx80_init(0x3ffe, 0xce248c151f84bf00ULL),
make_floatx80_init(0xbffc, 0xc76dcfab81ed0400ULL) },
{ make_floatx80_init(0xbffd, 0x8fffffffffffafffULL),
make_floatx80_init(0x3ffe, 0xd2a81d91f12afb2bULL),
make_floatx80_init(0xbffc, 0xb55f89b83b541354ULL) },
{ make_floatx80_init(0xbffc, 0xffffffffffff81a3ULL),
make_floatx80_init(0x3ffe, 0xd744fccad69d7d5eULL),
make_floatx80_init(0xbffc, 0xa2ec0cd4a58a0a88ULL) },
{ make_floatx80_init(0xbffc, 0xdfffffffffff1568ULL),
make_floatx80_init(0x3ffe, 0xdbfbb797daf25a44ULL),
make_floatx80_init(0xbffc, 0x901121a0943696f0ULL) },
{ make_floatx80_init(0xbffc, 0xbfffffffffff68daULL),
make_floatx80_init(0x3ffe, 0xe0ccdeec2a94f811ULL),
make_floatx80_init(0xbffb, 0xf999089eab583f78ULL) },
{ make_floatx80_init(0xbffc, 0x9fffffffffff4690ULL),
make_floatx80_init(0x3ffe, 0xe5b906e77c83657eULL),
make_floatx80_init(0xbffb, 0xd237c8c41be4d410ULL) },
{ make_floatx80_init(0xbffb, 0xffffffffffff8aeeULL),
make_floatx80_init(0x3ffe, 0xeac0c6e7dd24427cULL),
make_floatx80_init(0xbffb, 0xa9f9c8c116ddec20ULL) },
{ make_floatx80_init(0xbffb, 0xbfffffffffff2d18ULL),
make_floatx80_init(0x3ffe, 0xefe4b99bdcdb06ebULL),
make_floatx80_init(0xbffb, 0x80da33211927c8a8ULL) },
{ make_floatx80_init(0xbffa, 0xffffffffffff8ccbULL),
make_floatx80_init(0x3ffe, 0xf5257d152486d0f4ULL),
make_floatx80_init(0xbffa, 0xada82eadb792f0c0ULL) },
{ make_floatx80_init(0xbff9, 0xffffffffffff11feULL),
make_floatx80_init(0x3ffe, 0xfa83b2db722a0846ULL),
make_floatx80_init(0xbff9, 0xaf89a491babef740ULL) },
{ floatx80_zero_init,
make_floatx80_init(0x3fff, 0x8000000000000000ULL),
floatx80_zero_init },
{ make_floatx80_init(0x3ff9, 0xffffffffffff2680ULL),
make_floatx80_init(0x3fff, 0x82cd8698ac2b9f6fULL),
make_floatx80_init(0x3ff9, 0xb361a62b0ae7dbc0ULL) },
{ make_floatx80_init(0x3ffb, 0x800000000000b500ULL),
make_floatx80_init(0x3fff, 0x85aac367cc488345ULL),
make_floatx80_init(0x3ffa, 0xb5586cf9891068a0ULL) },
{ make_floatx80_init(0x3ffb, 0xbfffffffffff4b67ULL),
make_floatx80_init(0x3fff, 0x88980e8092da7cceULL),
make_floatx80_init(0x3ffb, 0x8980e8092da7cce0ULL) },
{ make_floatx80_init(0x3ffb, 0xffffffffffffff57ULL),
make_floatx80_init(0x3fff, 0x8b95c1e3ea8bd6dfULL),
make_floatx80_init(0x3ffb, 0xb95c1e3ea8bd6df0ULL) },
{ make_floatx80_init(0x3ffc, 0x9fffffffffff811fULL),
make_floatx80_init(0x3fff, 0x8ea4398b45cd4780ULL),
make_floatx80_init(0x3ffb, 0xea4398b45cd47800ULL) },
{ make_floatx80_init(0x3ffc, 0xbfffffffffff9980ULL),
make_floatx80_init(0x3fff, 0x91c3d373ab11b919ULL),
make_floatx80_init(0x3ffc, 0x8e1e9b9d588dc8c8ULL) },
{ make_floatx80_init(0x3ffc, 0xdffffffffffff631ULL),
make_floatx80_init(0x3fff, 0x94f4efa8fef70864ULL),
make_floatx80_init(0x3ffc, 0xa7a77d47f7b84320ULL) },
{ make_floatx80_init(0x3ffc, 0xffffffffffff2499ULL),
make_floatx80_init(0x3fff, 0x9837f0518db892d4ULL),
make_floatx80_init(0x3ffc, 0xc1bf828c6dc496a0ULL) },
{ make_floatx80_init(0x3ffd, 0x8fffffffffff80fbULL),
make_floatx80_init(0x3fff, 0x9b8d39b9d54e3a79ULL),
make_floatx80_init(0x3ffc, 0xdc69cdceaa71d3c8ULL) },
{ make_floatx80_init(0x3ffd, 0x9fffffffffffbc23ULL),
make_floatx80_init(0x3fff, 0x9ef5326091a10313ULL),
make_floatx80_init(0x3ffc, 0xf7a993048d081898ULL) },
{ make_floatx80_init(0x3ffd, 0xafffffffffff20ecULL),
make_floatx80_init(0x3fff, 0xa27043030c49370aULL),
make_floatx80_init(0x3ffd, 0x89c10c0c3124dc28ULL) },
{ make_floatx80_init(0x3ffd, 0xc00000000000fd2cULL),
make_floatx80_init(0x3fff, 0xa5fed6a9b15171cfULL),
make_floatx80_init(0x3ffd, 0x97fb5aa6c545c73cULL) },
{ make_floatx80_init(0x3ffd, 0xd0000000000093beULL),
make_floatx80_init(0x3fff, 0xa9a15ab4ea7c30e6ULL),
make_floatx80_init(0x3ffd, 0xa6856ad3a9f0c398ULL) },
{ make_floatx80_init(0x3ffd, 0xe00000000000c2aeULL),
make_floatx80_init(0x3fff, 0xad583eea42a17876ULL),
make_floatx80_init(0x3ffd, 0xb560fba90a85e1d8ULL) },
{ make_floatx80_init(0x3ffd, 0xefffffffffff1e3fULL),
make_floatx80_init(0x3fff, 0xb123f581d2abef6cULL),
make_floatx80_init(0x3ffd, 0xc48fd6074aafbdb0ULL) },
{ make_floatx80_init(0x3ffd, 0xffffffffffff1c23ULL),
make_floatx80_init(0x3fff, 0xb504f333f9de2cadULL),
make_floatx80_init(0x3ffd, 0xd413cccfe778b2b4ULL) },
{ make_floatx80_init(0x3ffe, 0x8800000000006344ULL),
make_floatx80_init(0x3fff, 0xb8fbaf4762fbd0a1ULL),
make_floatx80_init(0x3ffd, 0xe3eebd1d8bef4284ULL) },
{ make_floatx80_init(0x3ffe, 0x9000000000005d67ULL),
make_floatx80_init(0x3fff, 0xbd08a39f580c668dULL),
make_floatx80_init(0x3ffd, 0xf4228e7d60319a34ULL) },
{ make_floatx80_init(0x3ffe, 0x9800000000009127ULL),
make_floatx80_init(0x3fff, 0xc12c4cca6670e042ULL),
make_floatx80_init(0x3ffe, 0x82589994cce1c084ULL) },
{ make_floatx80_init(0x3ffe, 0x9fffffffffff06f9ULL),
make_floatx80_init(0x3fff, 0xc5672a11550655c3ULL),
make_floatx80_init(0x3ffe, 0x8ace5422aa0cab86ULL) },
{ make_floatx80_init(0x3ffe, 0xa7fffffffffff80dULL),
make_floatx80_init(0x3fff, 0xc9b9bd866e2f234bULL),
make_floatx80_init(0x3ffe, 0x93737b0cdc5e4696ULL) },
{ make_floatx80_init(0x3ffe, 0xafffffffffff1470ULL),
make_floatx80_init(0x3fff, 0xce248c151f83fd69ULL),
make_floatx80_init(0x3ffe, 0x9c49182a3f07fad2ULL) },
{ make_floatx80_init(0x3ffe, 0xb800000000000e0aULL),
make_floatx80_init(0x3fff, 0xd2a81d91f12aec5cULL),
make_floatx80_init(0x3ffe, 0xa5503b23e255d8b8ULL) },
{ make_floatx80_init(0x3ffe, 0xc00000000000b7faULL),
make_floatx80_init(0x3fff, 0xd744fccad69dd630ULL),
make_floatx80_init(0x3ffe, 0xae89f995ad3bac60ULL) },
{ make_floatx80_init(0x3ffe, 0xc800000000003aa6ULL),
make_floatx80_init(0x3fff, 0xdbfbb797daf25a44ULL),
make_floatx80_init(0x3ffe, 0xb7f76f2fb5e4b488ULL) },
{ make_floatx80_init(0x3ffe, 0xd00000000000a6aeULL),
make_floatx80_init(0x3fff, 0xe0ccdeec2a954685ULL),
make_floatx80_init(0x3ffe, 0xc199bdd8552a8d0aULL) },
{ make_floatx80_init(0x3ffe, 0xd800000000004165ULL),
make_floatx80_init(0x3fff, 0xe5b906e77c837155ULL),
make_floatx80_init(0x3ffe, 0xcb720dcef906e2aaULL) },
{ make_floatx80_init(0x3ffe, 0xe00000000000582cULL),
make_floatx80_init(0x3fff, 0xeac0c6e7dd24713aULL),
make_floatx80_init(0x3ffe, 0xd5818dcfba48e274ULL) },
{ make_floatx80_init(0x3ffe, 0xe800000000001a5dULL),
make_floatx80_init(0x3fff, 0xefe4b99bdcdb06ebULL),
make_floatx80_init(0x3ffe, 0xdfc97337b9b60dd6ULL) },
{ make_floatx80_init(0x3ffe, 0xefffffffffffc1efULL),
make_floatx80_init(0x3fff, 0xf5257d152486a2faULL),
make_floatx80_init(0x3ffe, 0xea4afa2a490d45f4ULL) },
{ make_floatx80_init(0x3ffe, 0xf800000000001069ULL),
make_floatx80_init(0x3fff, 0xfa83b2db722a0e5cULL),
make_floatx80_init(0x3ffe, 0xf50765b6e4541cb8ULL) },
{ make_floatx80_init(0x3fff, 0x8000000000000000ULL),
make_floatx80_init(0x4000, 0x8000000000000000ULL),
make_floatx80_init(0x3fff, 0x8000000000000000ULL) },
};
void helper_f2xm1(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
uint64_t sig = extractFloatx80Frac(ST0);
int32_t exp = extractFloatx80Exp(ST0);
bool sign = extractFloatx80Sign(ST0);
if (floatx80_invalid_encoding(ST0)) {
float_raise(float_flag_invalid, &env->fp_status);
ST0 = floatx80_default_nan(&env->fp_status);
} else if (floatx80_is_any_nan(ST0)) {
if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
float_raise(float_flag_invalid, &env->fp_status);
ST0 = floatx80_silence_nan(ST0, &env->fp_status);
}
} else if (exp > 0x3fff ||
(exp == 0x3fff && sig != (0x8000000000000000ULL))) {
/* Out of range for the instruction, treat as invalid. */
float_raise(float_flag_invalid, &env->fp_status);
ST0 = floatx80_default_nan(&env->fp_status);
} else if (exp == 0x3fff) {
/* Argument 1 or -1, exact result 1 or -0.5. */
if (sign) {
ST0 = make_floatx80(0xbffe, 0x8000000000000000ULL);
}
} else if (exp < 0x3fb0) {
if (!floatx80_is_zero(ST0)) {
/*
* Multiplying the argument by an extra-precision version
* of log(2) is sufficiently precise. Zero arguments are
* returned unchanged.
*/
uint64_t sig0, sig1, sig2;
if (exp == 0) {
normalizeFloatx80Subnormal(sig, &exp, &sig);
}
mul128By64To192(ln2_sig_high, ln2_sig_low, sig, &sig0, &sig1,
&sig2);
/* This result is inexact. */
sig1 |= 1;
ST0 = normalizeRoundAndPackFloatx80(floatx80_precision_x,
sign, exp, sig0, sig1,
&env->fp_status);
}
} else {
floatx80 tmp, y, accum;
bool asign, bsign;
int32_t n, aexp, bexp;
uint64_t asig0, asig1, asig2, bsig0, bsig1;
FloatRoundMode save_mode = env->fp_status.float_rounding_mode;
FloatX80RoundPrec save_prec =
env->fp_status.floatx80_rounding_precision;
env->fp_status.float_rounding_mode = float_round_nearest_even;
env->fp_status.floatx80_rounding_precision = floatx80_precision_x;
/* Find the nearest multiple of 1/32 to the argument. */
tmp = floatx80_scalbn(ST0, 5, &env->fp_status);
n = 32 + floatx80_to_int32(tmp, &env->fp_status);
y = floatx80_sub(ST0, f2xm1_table[n].t, &env->fp_status);
if (floatx80_is_zero(y)) {
/*
* Use the value of 2^t - 1 from the table, to avoid
* needing to special-case zero as a result of
* multiplication below.
*/
ST0 = f2xm1_table[n].t;
set_float_exception_flags(float_flag_inexact, &env->fp_status);
env->fp_status.float_rounding_mode = save_mode;
} else {
/*
* Compute the lower parts of a polynomial expansion for
* (2^y - 1) / y.
*/
accum = floatx80_mul(f2xm1_coeff_7, y, &env->fp_status);
accum = floatx80_add(f2xm1_coeff_6, accum, &env->fp_status);
accum = floatx80_mul(accum, y, &env->fp_status);
accum = floatx80_add(f2xm1_coeff_5, accum, &env->fp_status);
accum = floatx80_mul(accum, y, &env->fp_status);
accum = floatx80_add(f2xm1_coeff_4, accum, &env->fp_status);
accum = floatx80_mul(accum, y, &env->fp_status);
accum = floatx80_add(f2xm1_coeff_3, accum, &env->fp_status);
accum = floatx80_mul(accum, y, &env->fp_status);
accum = floatx80_add(f2xm1_coeff_2, accum, &env->fp_status);
accum = floatx80_mul(accum, y, &env->fp_status);
accum = floatx80_add(f2xm1_coeff_1, accum, &env->fp_status);
accum = floatx80_mul(accum, y, &env->fp_status);
accum = floatx80_add(f2xm1_coeff_0_low, accum, &env->fp_status);
/*
* The full polynomial expansion is f2xm1_coeff_0 + accum
* (where accum has much lower magnitude, and so, in
* particular, carry out of the addition is not possible).
* (This expansion is only accurate to about 70 bits, not
* 128 bits.)
*/
aexp = extractFloatx80Exp(f2xm1_coeff_0);
asign = extractFloatx80Sign(f2xm1_coeff_0);
shift128RightJamming(extractFloatx80Frac(accum), 0,
aexp - extractFloatx80Exp(accum),
&asig0, &asig1);
bsig0 = extractFloatx80Frac(f2xm1_coeff_0);
bsig1 = 0;
if (asign == extractFloatx80Sign(accum)) {
add128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
} else {
sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
}
/* And thus compute an approximation to 2^y - 1. */
mul128By64To192(asig0, asig1, extractFloatx80Frac(y),
&asig0, &asig1, &asig2);
aexp += extractFloatx80Exp(y) - 0x3ffe;
asign ^= extractFloatx80Sign(y);
if (n != 32) {
/*
* Multiply this by the precomputed value of 2^t and
* add that of 2^t - 1.
*/
mul128By64To192(asig0, asig1,
extractFloatx80Frac(f2xm1_table[n].exp2),
&asig0, &asig1, &asig2);
aexp += extractFloatx80Exp(f2xm1_table[n].exp2) - 0x3ffe;
bexp = extractFloatx80Exp(f2xm1_table[n].exp2m1);
bsig0 = extractFloatx80Frac(f2xm1_table[n].exp2m1);
bsig1 = 0;
if (bexp < aexp) {
shift128RightJamming(bsig0, bsig1, aexp - bexp,
&bsig0, &bsig1);
} else if (aexp < bexp) {
shift128RightJamming(asig0, asig1, bexp - aexp,
&asig0, &asig1);
aexp = bexp;
}
/* The sign of 2^t - 1 is always that of the result. */
bsign = extractFloatx80Sign(f2xm1_table[n].exp2m1);
if (asign == bsign) {
/* Avoid possible carry out of the addition. */
shift128RightJamming(asig0, asig1, 1,
&asig0, &asig1);
shift128RightJamming(bsig0, bsig1, 1,
&bsig0, &bsig1);
++aexp;
add128(asig0, asig1, bsig0, bsig1, &asig0, &asig1);
} else {
sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
asign = bsign;
}
}
env->fp_status.float_rounding_mode = save_mode;
/* This result is inexact. */
asig1 |= 1;
ST0 = normalizeRoundAndPackFloatx80(floatx80_precision_x,
asign, aexp, asig0, asig1,
&env->fp_status);
}
env->fp_status.floatx80_rounding_precision = save_prec;
}
merge_exception_flags(env, old_flags);
}
void helper_fptan(CPUX86State *env)
{
double fptemp = floatx80_to_double(env, ST0);
if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
fptemp = tan(fptemp);
ST0 = double_to_floatx80(env, fptemp);
fpush(env);
ST0 = floatx80_one;
env->fpus &= ~0x400; /* C2 <-- 0 */
/* the above code is for |arg| < 2**52 only */
}
}
/* Values of pi/4, pi/2, 3pi/4 and pi, with 128-bit precision. */
#define pi_4_exp 0x3ffe
#define pi_4_sig_high 0xc90fdaa22168c234ULL
#define pi_4_sig_low 0xc4c6628b80dc1cd1ULL
#define pi_2_exp 0x3fff
#define pi_2_sig_high 0xc90fdaa22168c234ULL
#define pi_2_sig_low 0xc4c6628b80dc1cd1ULL
#define pi_34_exp 0x4000
#define pi_34_sig_high 0x96cbe3f9990e91a7ULL
#define pi_34_sig_low 0x9394c9e8a0a5159dULL
#define pi_exp 0x4000
#define pi_sig_high 0xc90fdaa22168c234ULL
#define pi_sig_low 0xc4c6628b80dc1cd1ULL
/*
* Polynomial coefficients for an approximation to atan(x), with only
* odd powers of x used, for x in the interval [-1/16, 1/16]. (Unlike
* for some other approximations, no low part is needed for the first
* coefficient here to achieve a sufficiently accurate result, because
* the coefficient in this minimax approximation is very close to
* exactly 1.)
*/
#define fpatan_coeff_0 make_floatx80(0x3fff, 0x8000000000000000ULL)
#define fpatan_coeff_1 make_floatx80(0xbffd, 0xaaaaaaaaaaaaaa43ULL)
#define fpatan_coeff_2 make_floatx80(0x3ffc, 0xccccccccccbfe4f8ULL)
#define fpatan_coeff_3 make_floatx80(0xbffc, 0x92492491fbab2e66ULL)
#define fpatan_coeff_4 make_floatx80(0x3ffb, 0xe38e372881ea1e0bULL)
#define fpatan_coeff_5 make_floatx80(0xbffb, 0xba2c0104bbdd0615ULL)
#define fpatan_coeff_6 make_floatx80(0x3ffb, 0x9baf7ebf898b42efULL)
struct fpatan_data {
/* High and low parts of atan(x). */
floatx80 atan_high, atan_low;
};
static const struct fpatan_data fpatan_table[9] = {
{ floatx80_zero_init,
floatx80_zero_init },
{ make_floatx80_init(0x3ffb, 0xfeadd4d5617b6e33ULL),
make_floatx80_init(0xbfb9, 0xdda19d8305ddc420ULL) },
{ make_floatx80_init(0x3ffc, 0xfadbafc96406eb15ULL),
make_floatx80_init(0x3fbb, 0xdb8f3debef442fccULL) },
{ make_floatx80_init(0x3ffd, 0xb7b0ca0f26f78474ULL),
make_floatx80_init(0xbfbc, 0xeab9bdba460376faULL) },
{ make_floatx80_init(0x3ffd, 0xed63382b0dda7b45ULL),
make_floatx80_init(0x3fbc, 0xdfc88bd978751a06ULL) },
{ make_floatx80_init(0x3ffe, 0x8f005d5ef7f59f9bULL),
make_floatx80_init(0x3fbd, 0xb906bc2ccb886e90ULL) },
{ make_floatx80_init(0x3ffe, 0xa4bc7d1934f70924ULL),
make_floatx80_init(0x3fbb, 0xcd43f9522bed64f8ULL) },
{ make_floatx80_init(0x3ffe, 0xb8053e2bc2319e74ULL),
make_floatx80_init(0xbfbc, 0xd3496ab7bd6eef0cULL) },
{ make_floatx80_init(0x3ffe, 0xc90fdaa22168c235ULL),
make_floatx80_init(0xbfbc, 0xece675d1fc8f8cbcULL) },
};
void helper_fpatan(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
uint64_t arg0_sig = extractFloatx80Frac(ST0);
int32_t arg0_exp = extractFloatx80Exp(ST0);
bool arg0_sign = extractFloatx80Sign(ST0);
uint64_t arg1_sig = extractFloatx80Frac(ST1);
int32_t arg1_exp = extractFloatx80Exp(ST1);
bool arg1_sign = extractFloatx80Sign(ST1);
if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
float_raise(float_flag_invalid, &env->fp_status);
ST1 = floatx80_silence_nan(ST0, &env->fp_status);
} else if (floatx80_is_signaling_nan(ST1, &env->fp_status)) {
float_raise(float_flag_invalid, &env->fp_status);
ST1 = floatx80_silence_nan(ST1, &env->fp_status);
} else if (floatx80_invalid_encoding(ST0) ||
floatx80_invalid_encoding(ST1)) {
float_raise(float_flag_invalid, &env->fp_status);
ST1 = floatx80_default_nan(&env->fp_status);
} else if (floatx80_is_any_nan(ST0)) {
ST1 = ST0;
} else if (floatx80_is_any_nan(ST1)) {
/* Pass this NaN through. */
} else if (floatx80_is_zero(ST1) && !arg0_sign) {
/* Pass this zero through. */
} else if (((floatx80_is_infinity(ST0) && !floatx80_is_infinity(ST1)) ||
arg0_exp - arg1_exp >= 80) &&
!arg0_sign) {
/*
* Dividing ST1 by ST0 gives the correct result up to
* rounding, and avoids spurious underflow exceptions that
* might result from passing some small values through the
* polynomial approximation, but if a finite nonzero result of
* division is exact, the result of fpatan is still inexact
* (and underflowing where appropriate).
*/
FloatX80RoundPrec save_prec =
env->fp_status.floatx80_rounding_precision;
env->fp_status.floatx80_rounding_precision = floatx80_precision_x;
ST1 = floatx80_div(ST1, ST0, &env->fp_status);
env->fp_status.floatx80_rounding_precision = save_prec;
if (!floatx80_is_zero(ST1) &&
!(get_float_exception_flags(&env->fp_status) &
float_flag_inexact)) {
/*
* The mathematical result is very slightly closer to zero
* than this exact result. Round a value with the
* significand adjusted accordingly to get the correct
* exceptions, and possibly an adjusted result depending
* on the rounding mode.
*/
uint64_t sig = extractFloatx80Frac(ST1);
int32_t exp = extractFloatx80Exp(ST1);
bool sign = extractFloatx80Sign(ST1);
if (exp == 0) {
normalizeFloatx80Subnormal(sig, &exp, &sig);
}
ST1 = normalizeRoundAndPackFloatx80(floatx80_precision_x,
sign, exp, sig - 1,
-1, &env->fp_status);
}
} else {
/* The result is inexact. */
bool rsign = arg1_sign;
int32_t rexp;
uint64_t rsig0, rsig1;
if (floatx80_is_zero(ST1)) {
/*
* ST0 is negative. The result is pi with the sign of
* ST1.
*/
rexp = pi_exp;
rsig0 = pi_sig_high;
rsig1 = pi_sig_low;
} else if (floatx80_is_infinity(ST1)) {
if (floatx80_is_infinity(ST0)) {
if (arg0_sign) {
rexp = pi_34_exp;
rsig0 = pi_34_sig_high;
rsig1 = pi_34_sig_low;
} else {
rexp = pi_4_exp;
rsig0 = pi_4_sig_high;
rsig1 = pi_4_sig_low;
}
} else {
rexp = pi_2_exp;
rsig0 = pi_2_sig_high;
rsig1 = pi_2_sig_low;
}
} else if (floatx80_is_zero(ST0) || arg1_exp - arg0_exp >= 80) {
rexp = pi_2_exp;
rsig0 = pi_2_sig_high;
rsig1 = pi_2_sig_low;
} else if (floatx80_is_infinity(ST0) || arg0_exp - arg1_exp >= 80) {
/* ST0 is negative. */
rexp = pi_exp;
rsig0 = pi_sig_high;
rsig1 = pi_sig_low;
} else {
/*
* ST0 and ST1 are finite, nonzero and with exponents not
* too far apart.
*/
int32_t adj_exp, num_exp, den_exp, xexp, yexp, n, texp, zexp, aexp;
int32_t azexp, axexp;
bool adj_sub, ysign, zsign;
uint64_t adj_sig0, adj_sig1, num_sig, den_sig, xsig0, xsig1;
uint64_t msig0, msig1, msig2, remsig0, remsig1, remsig2;
uint64_t ysig0, ysig1, tsig, zsig0, zsig1, asig0, asig1;
uint64_t azsig0, azsig1;
uint64_t azsig2, azsig3, axsig0, axsig1;
floatx80 x8;
FloatRoundMode save_mode = env->fp_status.float_rounding_mode;
FloatX80RoundPrec save_prec =
env->fp_status.floatx80_rounding_precision;
env->fp_status.float_rounding_mode = float_round_nearest_even;
env->fp_status.floatx80_rounding_precision = floatx80_precision_x;
if (arg0_exp == 0) {
normalizeFloatx80Subnormal(arg0_sig, &arg0_exp, &arg0_sig);
}
if (arg1_exp == 0) {
normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
}
if (arg0_exp > arg1_exp ||
(arg0_exp == arg1_exp && arg0_sig >= arg1_sig)) {
/* Work with abs(ST1) / abs(ST0). */
num_exp = arg1_exp;
num_sig = arg1_sig;
den_exp = arg0_exp;
den_sig = arg0_sig;
if (arg0_sign) {
/* The result is subtracted from pi. */
adj_exp = pi_exp;
adj_sig0 = pi_sig_high;
adj_sig1 = pi_sig_low;
adj_sub = true;
} else {
/* The result is used as-is. */
adj_exp = 0;
adj_sig0 = 0;
adj_sig1 = 0;
adj_sub = false;
}
} else {
/* Work with abs(ST0) / abs(ST1). */
num_exp = arg0_exp;
num_sig = arg0_sig;
den_exp = arg1_exp;
den_sig = arg1_sig;
/* The result is added to or subtracted from pi/2. */
adj_exp = pi_2_exp;
adj_sig0 = pi_2_sig_high;
adj_sig1 = pi_2_sig_low;
adj_sub = !arg0_sign;
}
/*
* Compute x = num/den, where 0 < x <= 1 and x is not too
* small.
*/
xexp = num_exp - den_exp + 0x3ffe;
remsig0 = num_sig;
remsig1 = 0;
if (den_sig <= remsig0) {
shift128Right(remsig0, remsig1, 1, &remsig0, &remsig1);
++xexp;
}
xsig0 = estimateDiv128To64(remsig0, remsig1, den_sig);
mul64To128(den_sig, xsig0, &msig0, &msig1);
sub128(remsig0, remsig1, msig0, msig1, &remsig0, &remsig1);
while ((int64_t) remsig0 < 0) {
--xsig0;
add128(remsig0, remsig1, 0, den_sig, &remsig0, &remsig1);
}
xsig1 = estimateDiv128To64(remsig1, 0, den_sig);
/*
* No need to correct any estimation error in xsig1; even
* with such error, it is accurate enough.
*/
/*
* Split x as x = t + y, where t = n/8 is the nearest
* multiple of 1/8 to x.
*/
x8 = normalizeRoundAndPackFloatx80(floatx80_precision_x,
false, xexp + 3, xsig0,
xsig1, &env->fp_status);
n = floatx80_to_int32(x8, &env->fp_status);
if (n == 0) {
ysign = false;
yexp = xexp;
ysig0 = xsig0;
ysig1 = xsig1;
texp = 0;
tsig = 0;
} else {
int shift = clz32(n) + 32;
texp = 0x403b - shift;
tsig = n;
tsig <<= shift;
if (texp == xexp) {
sub128(xsig0, xsig1, tsig, 0, &ysig0, &ysig1);
if ((int64_t) ysig0 >= 0) {
ysign = false;
if (ysig0 == 0) {
if (ysig1 == 0) {
yexp = 0;
} else {
shift = clz64(ysig1) + 64;
yexp = xexp - shift;
shift128Left(ysig0, ysig1, shift,
&ysig0, &ysig1);
}
} else {
shift = clz64(ysig0);
yexp = xexp - shift;
shift128Left(ysig0, ysig1, shift, &ysig0, &ysig1);
}
} else {
ysign = true;
sub128(0, 0, ysig0, ysig1, &ysig0, &ysig1);
if (ysig0 == 0) {
shift = clz64(ysig1) + 64;
} else {
shift = clz64(ysig0);
}
yexp = xexp - shift;
shift128Left(ysig0, ysig1, shift, &ysig0, &ysig1);
}
} else {
/*
* t's exponent must be greater than x's because t
* is positive and the nearest multiple of 1/8 to
* x, and if x has a greater exponent, the power
* of 2 with that exponent is also a multiple of
* 1/8.
*/
uint64_t usig0, usig1;
shift128RightJamming(xsig0, xsig1, texp - xexp,
&usig0, &usig1);
ysign = true;
sub128(tsig, 0, usig0, usig1, &ysig0, &ysig1);
if (ysig0 == 0) {
shift = clz64(ysig1) + 64;
} else {
shift = clz64(ysig0);
}
yexp = texp - shift;
shift128Left(ysig0, ysig1, shift, &ysig0, &ysig1);
}
}
/*
* Compute z = y/(1+tx), so arctan(x) = arctan(t) +
* arctan(z).
*/
zsign = ysign;
if (texp == 0 || yexp == 0) {
zexp = yexp;
zsig0 = ysig0;
zsig1 = ysig1;
} else {
/*
* t <= 1, x <= 1 and if both are 1 then y is 0, so tx < 1.
*/
int32_t dexp = texp + xexp - 0x3ffe;
uint64_t dsig0, dsig1, dsig2;
mul128By64To192(xsig0, xsig1, tsig, &dsig0, &dsig1, &dsig2);
/*
* dexp <= 0x3fff (and if equal, dsig0 has a leading 0
* bit). Add 1 to produce the denominator 1+tx.
*/
shift128RightJamming(dsig0, dsig1, 0x3fff - dexp,
&dsig0, &dsig1);
dsig0 |= 0x8000000000000000ULL;
zexp = yexp - 1;
remsig0 = ysig0;
remsig1 = ysig1;
remsig2 = 0;
if (dsig0 <= remsig0) {
shift128Right(remsig0, remsig1, 1, &remsig0, &remsig1);
++zexp;
}
zsig0 = estimateDiv128To64(remsig0, remsig1, dsig0);
mul128By64To192(dsig0, dsig1, zsig0, &msig0, &msig1, &msig2);
sub192(remsig0, remsig1, remsig2, msig0, msig1, msig2,
&remsig0, &remsig1, &remsig2);
while ((int64_t) remsig0 < 0) {
--zsig0;
add192(remsig0, remsig1, remsig2, 0, dsig0, dsig1,
&remsig0, &remsig1, &remsig2);
}
zsig1 = estimateDiv128To64(remsig1, remsig2, dsig0);
/* No need to correct any estimation error in zsig1. */
}
if (zexp == 0) {
azexp = 0;
azsig0 = 0;
azsig1 = 0;
} else {
floatx80 z2, accum;
uint64_t z2sig0, z2sig1, z2sig2, z2sig3;
/* Compute z^2. */
mul128To256(zsig0, zsig1, zsig0, zsig1,
&z2sig0, &z2sig1, &z2sig2, &z2sig3);
z2 = normalizeRoundAndPackFloatx80(floatx80_precision_x, false,
zexp + zexp - 0x3ffe,
z2sig0, z2sig1,
&env->fp_status);
/* Compute the lower parts of the polynomial expansion. */
accum = floatx80_mul(fpatan_coeff_6, z2, &env->fp_status);
accum = floatx80_add(fpatan_coeff_5, accum, &env->fp_status);
accum = floatx80_mul(accum, z2, &env->fp_status);
accum = floatx80_add(fpatan_coeff_4, accum, &env->fp_status);
accum = floatx80_mul(accum, z2, &env->fp_status);
accum = floatx80_add(fpatan_coeff_3, accum, &env->fp_status);
accum = floatx80_mul(accum, z2, &env->fp_status);
accum = floatx80_add(fpatan_coeff_2, accum, &env->fp_status);
accum = floatx80_mul(accum, z2, &env->fp_status);
accum = floatx80_add(fpatan_coeff_1, accum, &env->fp_status);
accum = floatx80_mul(accum, z2, &env->fp_status);
/*
* The full polynomial expansion is z*(fpatan_coeff_0 + accum).
* fpatan_coeff_0 is 1, and accum is negative and much smaller.
*/
aexp = extractFloatx80Exp(fpatan_coeff_0);
shift128RightJamming(extractFloatx80Frac(accum), 0,
aexp - extractFloatx80Exp(accum),
&asig0, &asig1);
sub128(extractFloatx80Frac(fpatan_coeff_0), 0, asig0, asig1,
&asig0, &asig1);
/* Multiply by z to compute arctan(z). */
azexp = aexp + zexp - 0x3ffe;
mul128To256(asig0, asig1, zsig0, zsig1, &azsig0, &azsig1,
&azsig2, &azsig3);
}
/* Add arctan(t) (positive or zero) and arctan(z) (sign zsign). */
if (texp == 0) {
/* z is positive. */
axexp = azexp;
axsig0 = azsig0;
axsig1 = azsig1;
} else {
bool low_sign = extractFloatx80Sign(fpatan_table[n].atan_low);
int32_t low_exp = extractFloatx80Exp(fpatan_table[n].atan_low);
uint64_t low_sig0 =
extractFloatx80Frac(fpatan_table[n].atan_low);
uint64_t low_sig1 = 0;
axexp = extractFloatx80Exp(fpatan_table[n].atan_high);
axsig0 = extractFloatx80Frac(fpatan_table[n].atan_high);
axsig1 = 0;
shift128RightJamming(low_sig0, low_sig1, axexp - low_exp,
&low_sig0, &low_sig1);
if (low_sign) {
sub128(axsig0, axsig1, low_sig0, low_sig1,
&axsig0, &axsig1);
} else {
add128(axsig0, axsig1, low_sig0, low_sig1,
&axsig0, &axsig1);
}
if (azexp >= axexp) {
shift128RightJamming(axsig0, axsig1, azexp - axexp + 1,
&axsig0, &axsig1);
axexp = azexp + 1;
shift128RightJamming(azsig0, azsig1, 1,
&azsig0, &azsig1);
} else {
shift128RightJamming(axsig0, axsig1, 1,
&axsig0, &axsig1);
shift128RightJamming(azsig0, azsig1, axexp - azexp + 1,
&azsig0, &azsig1);
++axexp;
}
if (zsign) {
sub128(axsig0, axsig1, azsig0, azsig1,
&axsig0, &axsig1);
} else {
add128(axsig0, axsig1, azsig0, azsig1,
&axsig0, &axsig1);
}
}
if (adj_exp == 0) {
rexp = axexp;
rsig0 = axsig0;
rsig1 = axsig1;
} else {
/*
* Add or subtract arctan(x) (exponent axexp,
* significand axsig0 and axsig1, positive, not
* necessarily normalized) to the number given by
* adj_exp, adj_sig0 and adj_sig1, according to
* adj_sub.
*/
if (adj_exp >= axexp) {
shift128RightJamming(axsig0, axsig1, adj_exp - axexp + 1,
&axsig0, &axsig1);
rexp = adj_exp + 1;
shift128RightJamming(adj_sig0, adj_sig1, 1,
&adj_sig0, &adj_sig1);
} else {
shift128RightJamming(axsig0, axsig1, 1,
&axsig0, &axsig1);
shift128RightJamming(adj_sig0, adj_sig1,
axexp - adj_exp + 1,
&adj_sig0, &adj_sig1);
rexp = axexp + 1;
}
if (adj_sub) {
sub128(adj_sig0, adj_sig1, axsig0, axsig1,
&rsig0, &rsig1);
} else {
add128(adj_sig0, adj_sig1, axsig0, axsig1,
&rsig0, &rsig1);
}
}
env->fp_status.float_rounding_mode = save_mode;
env->fp_status.floatx80_rounding_precision = save_prec;
}
/* This result is inexact. */
rsig1 |= 1;
ST1 = normalizeRoundAndPackFloatx80(floatx80_precision_x, rsign, rexp,
rsig0, rsig1, &env->fp_status);
}
fpop(env);
merge_exception_flags(env, old_flags);
}
void helper_fxtract(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
CPU_LDoubleU temp;
temp.d = ST0;
if (floatx80_is_zero(ST0)) {
/* Easy way to generate -inf and raising division by 0 exception */
ST0 = floatx80_div(floatx80_chs(floatx80_one), floatx80_zero,
&env->fp_status);
fpush(env);
ST0 = temp.d;
} else if (floatx80_invalid_encoding(ST0)) {
float_raise(float_flag_invalid, &env->fp_status);
ST0 = floatx80_default_nan(&env->fp_status);
fpush(env);
ST0 = ST1;
} else if (floatx80_is_any_nan(ST0)) {
if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
float_raise(float_flag_invalid, &env->fp_status);
ST0 = floatx80_silence_nan(ST0, &env->fp_status);
}
fpush(env);
ST0 = ST1;
} else if (floatx80_is_infinity(ST0)) {
fpush(env);
ST0 = ST1;
ST1 = floatx80_infinity;
} else {
int expdif;
if (EXPD(temp) == 0) {
int shift = clz64(temp.l.lower);
temp.l.lower <<= shift;
expdif = 1 - EXPBIAS - shift;
float_raise(float_flag_input_denormal, &env->fp_status);
} else {
expdif = EXPD(temp) - EXPBIAS;
}
/* DP exponent bias */
ST0 = int32_to_floatx80(expdif, &env->fp_status);
fpush(env);
BIASEXPONENT(temp);
ST0 = temp.d;
}
merge_exception_flags(env, old_flags);
}
static void helper_fprem_common(CPUX86State *env, bool mod)
{
uint8_t old_flags = save_exception_flags(env);
uint64_t quotient;
CPU_LDoubleU temp0, temp1;
int exp0, exp1, expdiff;
temp0.d = ST0;
temp1.d = ST1;
exp0 = EXPD(temp0);
exp1 = EXPD(temp1);
env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
if (floatx80_is_zero(ST0) || floatx80_is_zero(ST1) ||
exp0 == 0x7fff || exp1 == 0x7fff ||
floatx80_invalid_encoding(ST0) || floatx80_invalid_encoding(ST1)) {
ST0 = floatx80_modrem(ST0, ST1, mod, "ient, &env->fp_status);
} else {
if (exp0 == 0) {
exp0 = 1 - clz64(temp0.l.lower);
}
if (exp1 == 0) {
exp1 = 1 - clz64(temp1.l.lower);
}
expdiff = exp0 - exp1;
if (expdiff < 64) {
ST0 = floatx80_modrem(ST0, ST1, mod, "ient, &env->fp_status);
env->fpus |= (quotient & 0x4) << (8 - 2); /* (C0) <-- q2 */
env->fpus |= (quotient & 0x2) << (14 - 1); /* (C3) <-- q1 */
env->fpus |= (quotient & 0x1) << (9 - 0); /* (C1) <-- q0 */
} else {
/*
* Partial remainder. This choice of how many bits to
* process at once is specified in AMD instruction set
* manuals, and empirically is followed by Intel
* processors as well; it ensures that the final remainder
* operation in a loop does produce the correct low three
* bits of the quotient. AMD manuals specify that the
* flags other than C2 are cleared, and empirically Intel
* processors clear them as well.
*/
int n = 32 + (expdiff % 32);
temp1.d = floatx80_scalbn(temp1.d, expdiff - n, &env->fp_status);
ST0 = floatx80_mod(ST0, temp1.d, &env->fp_status);
env->fpus |= 0x400; /* C2 <-- 1 */
}
}
merge_exception_flags(env, old_flags);
}
void helper_fprem1(CPUX86State *env)
{
helper_fprem_common(env, false);
}
void helper_fprem(CPUX86State *env)
{
helper_fprem_common(env, true);
}
/* 128-bit significand of log2(e). */
#define log2_e_sig_high 0xb8aa3b295c17f0bbULL
#define log2_e_sig_low 0xbe87fed0691d3e89ULL
/*
* Polynomial coefficients for an approximation to log2((1+x)/(1-x)),
* with only odd powers of x used, for x in the interval [2*sqrt(2)-3,
* 3-2*sqrt(2)], which corresponds to logarithms of numbers in the
* interval [sqrt(2)/2, sqrt(2)].
*/
#define fyl2x_coeff_0 make_floatx80(0x4000, 0xb8aa3b295c17f0bcULL)
#define fyl2x_coeff_0_low make_floatx80(0xbfbf, 0x834972fe2d7bab1bULL)
#define fyl2x_coeff_1 make_floatx80(0x3ffe, 0xf6384ee1d01febb8ULL)
#define fyl2x_coeff_2 make_floatx80(0x3ffe, 0x93bb62877cdfa2e3ULL)
#define fyl2x_coeff_3 make_floatx80(0x3ffd, 0xd30bb153d808f269ULL)
#define fyl2x_coeff_4 make_floatx80(0x3ffd, 0xa42589eaf451499eULL)
#define fyl2x_coeff_5 make_floatx80(0x3ffd, 0x864d42c0f8f17517ULL)
#define fyl2x_coeff_6 make_floatx80(0x3ffc, 0xe3476578adf26272ULL)
#define fyl2x_coeff_7 make_floatx80(0x3ffc, 0xc506c5f874e6d80fULL)
#define fyl2x_coeff_8 make_floatx80(0x3ffc, 0xac5cf50cc57d6372ULL)
#define fyl2x_coeff_9 make_floatx80(0x3ffc, 0xb1ed0066d971a103ULL)
/*
* Compute an approximation of log2(1+arg), where 1+arg is in the
* interval [sqrt(2)/2, sqrt(2)]. It is assumed that when this
* function is called, rounding precision is set to 80 and the
* round-to-nearest mode is in effect. arg must not be exactly zero,
* and must not be so close to zero that underflow might occur.
*/
static void helper_fyl2x_common(CPUX86State *env, floatx80 arg, int32_t *exp,
uint64_t *sig0, uint64_t *sig1)
{
uint64_t arg0_sig = extractFloatx80Frac(arg);
int32_t arg0_exp = extractFloatx80Exp(arg);
bool arg0_sign = extractFloatx80Sign(arg);
bool asign;
int32_t dexp, texp, aexp;
uint64_t dsig0, dsig1, tsig0, tsig1, rsig0, rsig1, rsig2;
uint64_t msig0, msig1, msig2, t2sig0, t2sig1, t2sig2, t2sig3;
uint64_t asig0, asig1, asig2, asig3, bsig0, bsig1;
floatx80 t2, accum;
/*
* Compute an approximation of arg/(2+arg), with extra precision,
* as the argument to a polynomial approximation. The extra
* precision is only needed for the first term of the
* approximation, with subsequent terms being significantly
* smaller; the approximation only uses odd exponents, and the
* square of arg/(2+arg) is at most 17-12*sqrt(2) = 0.029....
*/
if (arg0_sign) {
dexp = 0x3fff;
shift128RightJamming(arg0_sig, 0, dexp - arg0_exp, &dsig0, &dsig1);
sub128(0, 0, dsig0, dsig1, &dsig0, &dsig1);
} else {
dexp = 0x4000;
shift128RightJamming(arg0_sig, 0, dexp - arg0_exp, &dsig0, &dsig1);
dsig0 |= 0x8000000000000000ULL;
}
texp = arg0_exp - dexp + 0x3ffe;
rsig0 = arg0_sig;
rsig1 = 0;
rsig2 = 0;
if (dsig0 <= rsig0) {
shift128Right(rsig0, rsig1, 1, &rsig0, &rsig1);
++texp;
}
tsig0 = estimateDiv128To64(rsig0, rsig1, dsig0);
mul128By64To192(dsig0, dsig1, tsig0, &msig0, &msig1, &msig2);
sub192(rsig0, rsig1, rsig2, msig0, msig1, msig2,
&rsig0, &rsig1, &rsig2);
while ((int64_t) rsig0 < 0) {
--tsig0;
add192(rsig0, rsig1, rsig2, 0, dsig0, dsig1,
&rsig0, &rsig1, &rsig2);
}
tsig1 = estimateDiv128To64(rsig1, rsig2, dsig0);
/*
* No need to correct any estimation error in tsig1; even with
* such error, it is accurate enough. Now compute the square of
* that approximation.
*/
mul128To256(tsig0, tsig1, tsig0, tsig1,
&t2sig0, &t2sig1, &t2sig2, &t2sig3);
t2 = normalizeRoundAndPackFloatx80(floatx80_precision_x, false,
texp + texp - 0x3ffe,
t2sig0, t2sig1, &env->fp_status);
/* Compute the lower parts of the polynomial expansion. */
accum = floatx80_mul(fyl2x_coeff_9, t2, &env->fp_status);
accum = floatx80_add(fyl2x_coeff_8, accum, &env->fp_status);
accum = floatx80_mul(accum, t2, &env->fp_status);
accum = floatx80_add(fyl2x_coeff_7, accum, &env->fp_status);
accum = floatx80_mul(accum, t2, &env->fp_status);
accum = floatx80_add(fyl2x_coeff_6, accum, &env->fp_status);
accum = floatx80_mul(accum, t2, &env->fp_status);
accum = floatx80_add(fyl2x_coeff_5, accum, &env->fp_status);
accum = floatx80_mul(accum, t2, &env->fp_status);
accum = floatx80_add(fyl2x_coeff_4, accum, &env->fp_status);
accum = floatx80_mul(accum, t2, &env->fp_status);
accum = floatx80_add(fyl2x_coeff_3, accum, &env->fp_status);
accum = floatx80_mul(accum, t2, &env->fp_status);
accum = floatx80_add(fyl2x_coeff_2, accum, &env->fp_status);
accum = floatx80_mul(accum, t2, &env->fp_status);
accum = floatx80_add(fyl2x_coeff_1, accum, &env->fp_status);
accum = floatx80_mul(accum, t2, &env->fp_status);
accum = floatx80_add(fyl2x_coeff_0_low, accum, &env->fp_status);
/*
* The full polynomial expansion is fyl2x_coeff_0 + accum (where
* accum has much lower magnitude, and so, in particular, carry
* out of the addition is not possible), multiplied by t. (This
* expansion is only accurate to about 70 bits, not 128 bits.)
*/
aexp = extractFloatx80Exp(fyl2x_coeff_0);
asign = extractFloatx80Sign(fyl2x_coeff_0);
shift128RightJamming(extractFloatx80Frac(accum), 0,
aexp - extractFloatx80Exp(accum),
&asig0, &asig1);
bsig0 = extractFloatx80Frac(fyl2x_coeff_0);
bsig1 = 0;
if (asign == extractFloatx80Sign(accum)) {
add128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
} else {
sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
}
/* Multiply by t to compute the required result. */
mul128To256(asig0, asig1, tsig0, tsig1,
&asig0, &asig1, &asig2, &asig3);
aexp += texp - 0x3ffe;
*exp = aexp;
*sig0 = asig0;
*sig1 = asig1;
}
void helper_fyl2xp1(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
uint64_t arg0_sig = extractFloatx80Frac(ST0);
int32_t arg0_exp = extractFloatx80Exp(ST0);
bool arg0_sign = extractFloatx80Sign(ST0);
uint64_t arg1_sig = extractFloatx80Frac(ST1);
int32_t arg1_exp = extractFloatx80Exp(ST1);
bool arg1_sign = extractFloatx80Sign(ST1);
if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
float_raise(float_flag_invalid, &env->fp_status);
ST1 = floatx80_silence_nan(ST0, &env->fp_status);
} else if (floatx80_is_signaling_nan(ST1, &env->fp_status)) {
float_raise(float_flag_invalid, &env->fp_status);
ST1 = floatx80_silence_nan(ST1, &env->fp_status);
} else if (floatx80_invalid_encoding(ST0) ||
floatx80_invalid_encoding(ST1)) {
float_raise(float_flag_invalid, &env->fp_status);
ST1 = floatx80_default_nan(&env->fp_status);
} else if (floatx80_is_any_nan(ST0)) {
ST1 = ST0;
} else if (floatx80_is_any_nan(ST1)) {
/* Pass this NaN through. */
} else if (arg0_exp > 0x3ffd ||
(arg0_exp == 0x3ffd && arg0_sig > (arg0_sign ?
0x95f619980c4336f7ULL :
0xd413cccfe7799211ULL))) {
/*
* Out of range for the instruction (ST0 must have absolute
* value less than 1 - sqrt(2)/2 = 0.292..., according to
* Intel manuals; AMD manuals allow a range from sqrt(2)/2 - 1
* to sqrt(2) - 1, which we allow here), treat as invalid.
*/
float_raise(float_flag_invalid, &env->fp_status);
ST1 = floatx80_default_nan(&env->fp_status);
} else if (floatx80_is_zero(ST0) || floatx80_is_zero(ST1) ||
arg1_exp == 0x7fff) {
/*
* One argument is zero, or multiplying by infinity; correct
* result is exact and can be obtained by multiplying the
* arguments.
*/
ST1 = floatx80_mul(ST0, ST1, &env->fp_status);
} else if (arg0_exp < 0x3fb0) {
/*
* Multiplying both arguments and an extra-precision version
* of log2(e) is sufficiently precise.
*/
uint64_t sig0, sig1, sig2;
int32_t exp;
if (arg0_exp == 0) {
normalizeFloatx80Subnormal(arg0_sig, &arg0_exp, &arg0_sig);
}
if (arg1_exp == 0) {
normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
}
mul128By64To192(log2_e_sig_high, log2_e_sig_low, arg0_sig,
&sig0, &sig1, &sig2);
exp = arg0_exp + 1;
mul128By64To192(sig0, sig1, arg1_sig, &sig0, &sig1, &sig2);
exp += arg1_exp - 0x3ffe;
/* This result is inexact. */
sig1 |= 1;
ST1 = normalizeRoundAndPackFloatx80(floatx80_precision_x,
arg0_sign ^ arg1_sign, exp,
sig0, sig1, &env->fp_status);
} else {
int32_t aexp;
uint64_t asig0, asig1, asig2;
FloatRoundMode save_mode = env->fp_status.float_rounding_mode;
FloatX80RoundPrec save_prec =
env->fp_status.floatx80_rounding_precision;
env->fp_status.float_rounding_mode = float_round_nearest_even;
env->fp_status.floatx80_rounding_precision = floatx80_precision_x;
helper_fyl2x_common(env, ST0, &aexp, &asig0, &asig1);
/*
* Multiply by the second argument to compute the required
* result.
*/
if (arg1_exp == 0) {
normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
}
mul128By64To192(asig0, asig1, arg1_sig, &asig0, &asig1, &asig2);
aexp += arg1_exp - 0x3ffe;
/* This result is inexact. */
asig1 |= 1;
env->fp_status.float_rounding_mode = save_mode;
ST1 = normalizeRoundAndPackFloatx80(floatx80_precision_x,
arg0_sign ^ arg1_sign, aexp,
asig0, asig1, &env->fp_status);
env->fp_status.floatx80_rounding_precision = save_prec;
}
fpop(env);
merge_exception_flags(env, old_flags);
}
void helper_fyl2x(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
uint64_t arg0_sig = extractFloatx80Frac(ST0);
int32_t arg0_exp = extractFloatx80Exp(ST0);
bool arg0_sign = extractFloatx80Sign(ST0);
uint64_t arg1_sig = extractFloatx80Frac(ST1);
int32_t arg1_exp = extractFloatx80Exp(ST1);
bool arg1_sign = extractFloatx80Sign(ST1);
if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
float_raise(float_flag_invalid, &env->fp_status);
ST1 = floatx80_silence_nan(ST0, &env->fp_status);
} else if (floatx80_is_signaling_nan(ST1, &env->fp_status)) {
float_raise(float_flag_invalid, &env->fp_status);
ST1 = floatx80_silence_nan(ST1, &env->fp_status);
} else if (floatx80_invalid_encoding(ST0) ||
floatx80_invalid_encoding(ST1)) {
float_raise(float_flag_invalid, &env->fp_status);
ST1 = floatx80_default_nan(&env->fp_status);
} else if (floatx80_is_any_nan(ST0)) {
ST1 = ST0;
} else if (floatx80_is_any_nan(ST1)) {
/* Pass this NaN through. */
} else if (arg0_sign && !floatx80_is_zero(ST0)) {
float_raise(float_flag_invalid, &env->fp_status);
ST1 = floatx80_default_nan(&env->fp_status);
} else if (floatx80_is_infinity(ST1)) {
FloatRelation cmp = floatx80_compare(ST0, floatx80_one,
&env->fp_status);
switch (cmp) {
case float_relation_less:
ST1 = floatx80_chs(ST1);
break;
case float_relation_greater:
/* Result is infinity of the same sign as ST1. */
break;
default:
float_raise(float_flag_invalid, &env->fp_status);
ST1 = floatx80_default_nan(&env->fp_status);
break;
}
} else if (floatx80_is_infinity(ST0)) {
if (floatx80_is_zero(ST1)) {
float_raise(float_flag_invalid, &env->fp_status);
ST1 = floatx80_default_nan(&env->fp_status);
} else if (arg1_sign) {
ST1 = floatx80_chs(ST0);
} else {
ST1 = ST0;
}
} else if (floatx80_is_zero(ST0)) {
if (floatx80_is_zero(ST1)) {
float_raise(float_flag_invalid, &env->fp_status);
ST1 = floatx80_default_nan(&env->fp_status);
} else {
/* Result is infinity with opposite sign to ST1. */
float_raise(float_flag_divbyzero, &env->fp_status);
ST1 = make_floatx80(arg1_sign ? 0x7fff : 0xffff,
0x8000000000000000ULL);
}
} else if (floatx80_is_zero(ST1)) {
if (floatx80_lt(ST0, floatx80_one, &env->fp_status)) {
ST1 = floatx80_chs(ST1);
}
/* Otherwise, ST1 is already the correct result. */
} else if (floatx80_eq(ST0, floatx80_one, &env->fp_status)) {
if (arg1_sign) {
ST1 = floatx80_chs(floatx80_zero);
} else {
ST1 = floatx80_zero;
}
} else {
int32_t int_exp;
floatx80 arg0_m1;
FloatRoundMode save_mode = env->fp_status.float_rounding_mode;
FloatX80RoundPrec save_prec =
env->fp_status.floatx80_rounding_precision;
env->fp_status.float_rounding_mode = float_round_nearest_even;
env->fp_status.floatx80_rounding_precision = floatx80_precision_x;
if (arg0_exp == 0) {
normalizeFloatx80Subnormal(arg0_sig, &arg0_exp, &arg0_sig);
}
if (arg1_exp == 0) {
normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
}
int_exp = arg0_exp - 0x3fff;
if (arg0_sig > 0xb504f333f9de6484ULL) {
++int_exp;
}
arg0_m1 = floatx80_sub(floatx80_scalbn(ST0, -int_exp,
&env->fp_status),
floatx80_one, &env->fp_status);
if (floatx80_is_zero(arg0_m1)) {
/* Exact power of 2; multiply by ST1. */
env->fp_status.float_rounding_mode = save_mode;
ST1 = floatx80_mul(int32_to_floatx80(int_exp, &env->fp_status),
ST1, &env->fp_status);
} else {
bool asign = extractFloatx80Sign(arg0_m1);
int32_t aexp;
uint64_t asig0, asig1, asig2;
helper_fyl2x_common(env, arg0_m1, &aexp, &asig0, &asig1);
if (int_exp != 0) {
bool isign = (int_exp < 0);
int32_t iexp;
uint64_t isig;
int shift;
int_exp = isign ? -int_exp : int_exp;
shift = clz32(int_exp) + 32;
isig = int_exp;
isig <<= shift;
iexp = 0x403e - shift;
shift128RightJamming(asig0, asig1, iexp - aexp,
&asig0, &asig1);
if (asign == isign) {
add128(isig, 0, asig0, asig1, &asig0, &asig1);
} else {
sub128(isig, 0, asig0, asig1, &asig0, &asig1);
}
aexp = iexp;
asign = isign;
}
/*
* Multiply by the second argument to compute the required
* result.
*/
if (arg1_exp == 0) {
normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
}
mul128By64To192(asig0, asig1, arg1_sig, &asig0, &asig1, &asig2);
aexp += arg1_exp - 0x3ffe;
/* This result is inexact. */
asig1 |= 1;
env->fp_status.float_rounding_mode = save_mode;
ST1 = normalizeRoundAndPackFloatx80(floatx80_precision_x,
asign ^ arg1_sign, aexp,
asig0, asig1, &env->fp_status);
}
env->fp_status.floatx80_rounding_precision = save_prec;
}
fpop(env);
merge_exception_flags(env, old_flags);
}
void helper_fsqrt(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
if (floatx80_is_neg(ST0)) {
env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
env->fpus |= 0x400;
}
ST0 = floatx80_sqrt(ST0, &env->fp_status);
merge_exception_flags(env, old_flags);
}
void helper_fsincos(CPUX86State *env)
{
double fptemp = floatx80_to_double(env, ST0);
if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
ST0 = double_to_floatx80(env, sin(fptemp));
fpush(env);
ST0 = double_to_floatx80(env, cos(fptemp));
env->fpus &= ~0x400; /* C2 <-- 0 */
/* the above code is for |arg| < 2**63 only */
}
}
void helper_frndint(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
ST0 = floatx80_round_to_int(ST0, &env->fp_status);
merge_exception_flags(env, old_flags);
}
void helper_fscale(CPUX86State *env)
{
uint8_t old_flags = save_exception_flags(env);
if (floatx80_invalid_encoding(ST1) || floatx80_invalid_encoding(ST0)) {
float_raise(float_flag_invalid, &env->fp_status);
ST0 = floatx80_default_nan(&env->fp_status);
} else if (floatx80_is_any_nan(ST1)) {
if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
float_raise(float_flag_invalid, &env->fp_status);
}
ST0 = ST1;
if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
float_raise(float_flag_invalid, &env->fp_status);
ST0 = floatx80_silence_nan(ST0, &env->fp_status);
}
} else if (floatx80_is_infinity(ST1) &&
!floatx80_invalid_encoding(ST0) &&
!floatx80_is_any_nan(ST0)) {
if (floatx80_is_neg(ST1)) {
if (floatx80_is_infinity(ST0)) {
float_raise(float_flag_invalid, &env->fp_status);
ST0 = floatx80_default_nan(&env->fp_status);
} else {
ST0 = (floatx80_is_neg(ST0) ?
floatx80_chs(floatx80_zero) :
floatx80_zero);
}
} else {
if (floatx80_is_zero(ST0)) {
float_raise(float_flag_invalid, &env->fp_status);
ST0 = floatx80_default_nan(&env->fp_status);
} else {
ST0 = (floatx80_is_neg(ST0) ?
floatx80_chs(floatx80_infinity) :
floatx80_infinity);
}
}
} else {
int n;
FloatX80RoundPrec save = env->fp_status.floatx80_rounding_precision;
uint8_t save_flags = get_float_exception_flags(&env->fp_status);
set_float_exception_flags(0, &env->fp_status);
n = floatx80_to_int32_round_to_zero(ST1, &env->fp_status);
set_float_exception_flags(save_flags, &env->fp_status);
env->fp_status.floatx80_rounding_precision = floatx80_precision_x;
ST0 = floatx80_scalbn(ST0, n, &env->fp_status);
env->fp_status.floatx80_rounding_precision = save;
}
merge_exception_flags(env, old_flags);
}
void helper_fsin(CPUX86State *env)
{
double fptemp = floatx80_to_double(env, ST0);
if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
ST0 = double_to_floatx80(env, sin(fptemp));
env->fpus &= ~0x400; /* C2 <-- 0 */
/* the above code is for |arg| < 2**53 only */
}
}
void helper_fcos(CPUX86State *env)
{
double fptemp = floatx80_to_double(env, ST0);
if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
ST0 = double_to_floatx80(env, cos(fptemp));
env->fpus &= ~0x400; /* C2 <-- 0 */
/* the above code is for |arg| < 2**63 only */
}
}
void helper_fxam_ST0(CPUX86State *env)
{
CPU_LDoubleU temp;
int expdif;
temp.d = ST0;
env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
if (SIGND(temp)) {
env->fpus |= 0x200; /* C1 <-- 1 */
}
if (env->fptags[env->fpstt]) {
env->fpus |= 0x4100; /* Empty */
return;
}
expdif = EXPD(temp);
if (expdif == MAXEXPD) {
if (MANTD(temp) == 0x8000000000000000ULL) {
env->fpus |= 0x500; /* Infinity */
} else if (MANTD(temp) & 0x8000000000000000ULL) {
env->fpus |= 0x100; /* NaN */
}
} else if (expdif == 0) {
if (MANTD(temp) == 0) {
env->fpus |= 0x4000; /* Zero */
} else {
env->fpus |= 0x4400; /* Denormal */
}
} else if (MANTD(temp) & 0x8000000000000000ULL) {
env->fpus |= 0x400;
}
}
static void do_fstenv(CPUX86State *env, target_ulong ptr, int data32,
uintptr_t retaddr)
{
int fpus, fptag, exp, i;
uint64_t mant;
CPU_LDoubleU tmp;
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
fptag = 0;
for (i = 7; i >= 0; i--) {
fptag <<= 2;
if (env->fptags[i]) {
fptag |= 3;
} else {
tmp.d = env->fpregs[i].d;
exp = EXPD(tmp);
mant = MANTD(tmp);
if (exp == 0 && mant == 0) {
/* zero */
fptag |= 1;
} else if (exp == 0 || exp == MAXEXPD
|| (mant & (1LL << 63)) == 0) {
/* NaNs, infinity, denormal */
fptag |= 2;
}
}
}
if (data32) {
/* 32 bit */
cpu_stl_data_ra(env, ptr, env->fpuc, retaddr);
cpu_stl_data_ra(env, ptr + 4, fpus, retaddr);
cpu_stl_data_ra(env, ptr + 8, fptag, retaddr);
cpu_stl_data_ra(env, ptr + 12, env->fpip, retaddr); /* fpip */
cpu_stl_data_ra(env, ptr + 16, env->fpcs, retaddr); /* fpcs */
cpu_stl_data_ra(env, ptr + 20, env->fpdp, retaddr); /* fpoo */
cpu_stl_data_ra(env, ptr + 24, env->fpds, retaddr); /* fpos */
} else {
/* 16 bit */
cpu_stw_data_ra(env, ptr, env->fpuc, retaddr);
cpu_stw_data_ra(env, ptr + 2, fpus, retaddr);
cpu_stw_data_ra(env, ptr + 4, fptag, retaddr);
cpu_stw_data_ra(env, ptr + 6, env->fpip, retaddr);
cpu_stw_data_ra(env, ptr + 8, env->fpcs, retaddr);
cpu_stw_data_ra(env, ptr + 10, env->fpdp, retaddr);
cpu_stw_data_ra(env, ptr + 12, env->fpds, retaddr);
}
}
void helper_fstenv(CPUX86State *env, target_ulong ptr, int data32)
{
do_fstenv(env, ptr, data32, GETPC());
}
static void cpu_set_fpus(CPUX86State *env, uint16_t fpus)
{
env->fpstt = (fpus >> 11) & 7;
env->fpus = fpus & ~0x3800 & ~FPUS_B;
env->fpus |= env->fpus & FPUS_SE ? FPUS_B : 0;
#if !defined(CONFIG_USER_ONLY)
if (!(env->fpus & FPUS_SE)) {
/*
* Here the processor deasserts FERR#; in response, the chipset deasserts
* IGNNE#.
*/
cpu_clear_ignne();
}
#endif
}
static void do_fldenv(CPUX86State *env, target_ulong ptr, int data32,
uintptr_t retaddr)
{
int i, fpus, fptag;
if (data32) {
cpu_set_fpuc(env, cpu_lduw_data_ra(env, ptr, retaddr));
fpus = cpu_lduw_data_ra(env, ptr + 4, retaddr);
fptag = cpu_lduw_data_ra(env, ptr + 8, retaddr);
} else {
cpu_set_fpuc(env, cpu_lduw_data_ra(env, ptr, retaddr));
fpus = cpu_lduw_data_ra(env, ptr + 2, retaddr);
fptag = cpu_lduw_data_ra(env, ptr + 4, retaddr);
}
cpu_set_fpus(env, fpus);
for (i = 0; i < 8; i++) {
env->fptags[i] = ((fptag & 3) == 3);
fptag >>= 2;
}
}
void helper_fldenv(CPUX86State *env, target_ulong ptr, int data32)
{
do_fldenv(env, ptr, data32, GETPC());
}
static void do_fsave(CPUX86State *env, target_ulong ptr, int data32,
uintptr_t retaddr)
{
floatx80 tmp;
int i;
do_fstenv(env, ptr, data32, retaddr);
ptr += (target_ulong)14 << data32;
for (i = 0; i < 8; i++) {
tmp = ST(i);
do_fstt(env, tmp, ptr, retaddr);
ptr += 10;
}
do_fninit(env);
}
void helper_fsave(CPUX86State *env, target_ulong ptr, int data32)
{
do_fsave(env, ptr, data32, GETPC());
}
static void do_frstor(CPUX86State *env, target_ulong ptr, int data32,
uintptr_t retaddr)
{
floatx80 tmp;
int i;
do_fldenv(env, ptr, data32, retaddr);
ptr += (target_ulong)14 << data32;
for (i = 0; i < 8; i++) {
tmp = do_fldt(env, ptr, retaddr);
ST(i) = tmp;
ptr += 10;
}
}
void helper_frstor(CPUX86State *env, target_ulong ptr, int data32)
{
do_frstor(env, ptr, data32, GETPC());
}
#define XO(X) offsetof(X86XSaveArea, X)
static void do_xsave_fpu(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
int fpus, fptag, i;
target_ulong addr;
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
fptag = 0;
for (i = 0; i < 8; i++) {
fptag |= (env->fptags[i] << i);
}
cpu_stw_data_ra(env, ptr + XO(legacy.fcw), env->fpuc, ra);
cpu_stw_data_ra(env, ptr + XO(legacy.fsw), fpus, ra);
cpu_stw_data_ra(env, ptr + XO(legacy.ftw), fptag ^ 0xff, ra);
/* In 32-bit mode this is eip, sel, dp, sel.
In 64-bit mode this is rip, rdp.
But in either case we don't write actual data, just zeros. */
cpu_stq_data_ra(env, ptr + XO(legacy.fpip), 0, ra); /* eip+sel; rip */
cpu_stq_data_ra(env, ptr + XO(legacy.fpdp), 0, ra); /* edp+sel; rdp */
addr = ptr + XO(legacy.fpregs);
for (i = 0; i < 8; i++) {
floatx80 tmp = ST(i);
do_fstt(env, tmp, addr, ra);
addr += 16;
}
}
static void do_xsave_mxcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
update_mxcsr_from_sse_status(env);
cpu_stl_data_ra(env, ptr + XO(legacy.mxcsr), env->mxcsr, ra);
cpu_stl_data_ra(env, ptr + XO(legacy.mxcsr_mask), 0x0000ffff, ra);
}
static void do_xsave_sse(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
int i, nb_xmm_regs;
target_ulong addr;
if (env->hflags & HF_CS64_MASK) {
nb_xmm_regs = 16;
} else {
nb_xmm_regs = 8;
}
addr = ptr + XO(legacy.xmm_regs);
for (i = 0; i < nb_xmm_regs; i++) {
cpu_stq_data_ra(env, addr, env->xmm_regs[i].ZMM_Q(0), ra);
cpu_stq_data_ra(env, addr + 8, env->xmm_regs[i].ZMM_Q(1), ra);
addr += 16;
}
}
static void do_xsave_ymmh(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
int i, nb_xmm_regs;
if (env->hflags & HF_CS64_MASK) {
nb_xmm_regs = 16;
} else {
nb_xmm_regs = 8;
}
for (i = 0; i < nb_xmm_regs; i++, ptr += 16) {
cpu_stq_data_ra(env, ptr, env->xmm_regs[i].ZMM_Q(2), ra);
cpu_stq_data_ra(env, ptr + 8, env->xmm_regs[i].ZMM_Q(3), ra);
}
}
static void do_xsave_bndregs(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
target_ulong addr = ptr + offsetof(XSaveBNDREG, bnd_regs);
int i;
for (i = 0; i < 4; i++, addr += 16) {
cpu_stq_data_ra(env, addr, env->bnd_regs[i].lb, ra);
cpu_stq_data_ra(env, addr + 8, env->bnd_regs[i].ub, ra);
}
}
static void do_xsave_bndcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
cpu_stq_data_ra(env, ptr + offsetof(XSaveBNDCSR, bndcsr.cfgu),
env->bndcs_regs.cfgu, ra);
cpu_stq_data_ra(env, ptr + offsetof(XSaveBNDCSR, bndcsr.sts),
env->bndcs_regs.sts, ra);
}
static void do_xsave_pkru(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
cpu_stq_data_ra(env, ptr, env->pkru, ra);
}
static void do_fxsave(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
/* The operand must be 16 byte aligned */
if (ptr & 0xf) {
raise_exception_ra(env, EXCP0D_GPF, ra);
}
do_xsave_fpu(env, ptr, ra);
if (env->cr[4] & CR4_OSFXSR_MASK) {
do_xsave_mxcsr(env, ptr, ra);
/* Fast FXSAVE leaves out the XMM registers */
if (!(env->efer & MSR_EFER_FFXSR)
|| (env->hflags & HF_CPL_MASK)
|| !(env->hflags & HF_LMA_MASK)) {
do_xsave_sse(env, ptr, ra);
}
}
}
void helper_fxsave(CPUX86State *env, target_ulong ptr)
{
do_fxsave(env, ptr, GETPC());
}
static uint64_t get_xinuse(CPUX86State *env)
{
uint64_t inuse = -1;
/* For the most part, we don't track XINUSE. We could calculate it
here for all components, but it's probably less work to simply
indicate in use. That said, the state of BNDREGS is important
enough to track in HFLAGS, so we might as well use that here. */
if ((env->hflags & HF_MPX_IU_MASK) == 0) {
inuse &= ~XSTATE_BNDREGS_MASK;
}
return inuse;
}
static void do_xsave(CPUX86State *env, target_ulong ptr, uint64_t rfbm,
uint64_t inuse, uint64_t opt, uintptr_t ra)
{
uint64_t old_bv, new_bv;
/* The OS must have enabled XSAVE. */
if (!(env->cr[4] & CR4_OSXSAVE_MASK)) {
raise_exception_ra(env, EXCP06_ILLOP, ra);
}
/* The operand must be 64 byte aligned. */
if (ptr & 63) {
raise_exception_ra(env, EXCP0D_GPF, ra);
}
/* Never save anything not enabled by XCR0. */
rfbm &= env->xcr0;
opt &= rfbm;
if (opt & XSTATE_FP_MASK) {
do_xsave_fpu(env, ptr, ra);
}
if (rfbm & XSTATE_SSE_MASK) {
/* Note that saving MXCSR is not suppressed by XSAVEOPT. */
do_xsave_mxcsr(env, ptr, ra);
}
if (opt & XSTATE_SSE_MASK) {
do_xsave_sse(env, ptr, ra);
}
if (opt & XSTATE_YMM_MASK) {
do_xsave_ymmh(env, ptr + XO(avx_state), ra);
}
if (opt & XSTATE_BNDREGS_MASK) {
do_xsave_bndregs(env, ptr + XO(bndreg_state), ra);
}
if (opt & XSTATE_BNDCSR_MASK) {
do_xsave_bndcsr(env, ptr + XO(bndcsr_state), ra);
}
if (opt & XSTATE_PKRU_MASK) {
do_xsave_pkru(env, ptr + XO(pkru_state), ra);
}
/* Update the XSTATE_BV field. */
old_bv = cpu_ldq_data_ra(env, ptr + XO(header.xstate_bv), ra);
new_bv = (old_bv & ~rfbm) | (inuse & rfbm);
cpu_stq_data_ra(env, ptr + XO(header.xstate_bv), new_bv, ra);
}
void helper_xsave(CPUX86State *env, target_ulong ptr, uint64_t rfbm)
{
do_xsave(env, ptr, rfbm, get_xinuse(env), -1, GETPC());
}
void helper_xsaveopt(CPUX86State *env, target_ulong ptr, uint64_t rfbm)
{
uint64_t inuse = get_xinuse(env);
do_xsave(env, ptr, rfbm, inuse, inuse, GETPC());
}
static void do_xrstor_fpu(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
int i, fpuc, fpus, fptag;
target_ulong addr;
fpuc = cpu_lduw_data_ra(env, ptr + XO(legacy.fcw), ra);
fpus = cpu_lduw_data_ra(env, ptr + XO(legacy.fsw), ra);
fptag = cpu_lduw_data_ra(env, ptr + XO(legacy.ftw), ra);
cpu_set_fpuc(env, fpuc);
cpu_set_fpus(env, fpus);
fptag ^= 0xff;
for (i = 0; i < 8; i++) {
env->fptags[i] = ((fptag >> i) & 1);
}
addr = ptr + XO(legacy.fpregs);
for (i = 0; i < 8; i++) {
floatx80 tmp = do_fldt(env, addr, ra);
ST(i) = tmp;
addr += 16;
}
}
static void do_xrstor_mxcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
cpu_set_mxcsr(env, cpu_ldl_data_ra(env, ptr + XO(legacy.mxcsr), ra));
}
static void do_xrstor_sse(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
int i, nb_xmm_regs;
target_ulong addr;
if (env->hflags & HF_CS64_MASK) {
nb_xmm_regs = 16;
} else {
nb_xmm_regs = 8;
}
addr = ptr + XO(legacy.xmm_regs);
for (i = 0; i < nb_xmm_regs; i++) {
env->xmm_regs[i].ZMM_Q(0) = cpu_ldq_data_ra(env, addr, ra);
env->xmm_regs[i].ZMM_Q(1) = cpu_ldq_data_ra(env, addr + 8, ra);
addr += 16;
}
}
static void do_clear_sse(CPUX86State *env)
{
int i, nb_xmm_regs;
if (env->hflags & HF_CS64_MASK) {
nb_xmm_regs = 16;
} else {
nb_xmm_regs = 8;
}
for (i = 0; i < nb_xmm_regs; i++) {
env->xmm_regs[i].ZMM_Q(0) = 0;
env->xmm_regs[i].ZMM_Q(1) = 0;
}
}
static void do_xrstor_ymmh(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
int i, nb_xmm_regs;
if (env->hflags & HF_CS64_MASK) {
nb_xmm_regs = 16;
} else {
nb_xmm_regs = 8;
}
for (i = 0; i < nb_xmm_regs; i++, ptr += 16) {
env->xmm_regs[i].ZMM_Q(2) = cpu_ldq_data_ra(env, ptr, ra);
env->xmm_regs[i].ZMM_Q(3) = cpu_ldq_data_ra(env, ptr + 8, ra);
}
}
static void do_clear_ymmh(CPUX86State *env)
{
int i, nb_xmm_regs;
if (env->hflags & HF_CS64_MASK) {
nb_xmm_regs = 16;
} else {
nb_xmm_regs = 8;
}
for (i = 0; i < nb_xmm_regs; i++) {
env->xmm_regs[i].ZMM_Q(2) = 0;
env->xmm_regs[i].ZMM_Q(3) = 0;
}
}
static void do_xrstor_bndregs(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
target_ulong addr = ptr + offsetof(XSaveBNDREG, bnd_regs);
int i;
for (i = 0; i < 4; i++, addr += 16) {
env->bnd_regs[i].lb = cpu_ldq_data_ra(env, addr, ra);
env->bnd_regs[i].ub = cpu_ldq_data_ra(env, addr + 8, ra);
}
}
static void do_xrstor_bndcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
/* FIXME: Extend highest implemented bit of linear address. */
env->bndcs_regs.cfgu
= cpu_ldq_data_ra(env, ptr + offsetof(XSaveBNDCSR, bndcsr.cfgu), ra);
env->bndcs_regs.sts
= cpu_ldq_data_ra(env, ptr + offsetof(XSaveBNDCSR, bndcsr.sts), ra);
}
static void do_xrstor_pkru(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
env->pkru = cpu_ldq_data_ra(env, ptr, ra);
}
static void do_fxrstor(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
/* The operand must be 16 byte aligned */
if (ptr & 0xf) {
raise_exception_ra(env, EXCP0D_GPF, ra);
}
do_xrstor_fpu(env, ptr, ra);
if (env->cr[4] & CR4_OSFXSR_MASK) {
do_xrstor_mxcsr(env, ptr, ra);
/* Fast FXRSTOR leaves out the XMM registers */
if (!(env->efer & MSR_EFER_FFXSR)
|| (env->hflags & HF_CPL_MASK)
|| !(env->hflags & HF_LMA_MASK)) {
do_xrstor_sse(env, ptr, ra);
}
}
}
void helper_fxrstor(CPUX86State *env, target_ulong ptr)
{
do_fxrstor(env, ptr, GETPC());
}
static void do_xrstor(CPUX86State *env, target_ulong ptr, uint64_t rfbm, uintptr_t ra)
{
uint64_t xstate_bv, xcomp_bv, reserve0;
rfbm &= env->xcr0;
/* The OS must have enabled XSAVE. */
if (!(env->cr[4] & CR4_OSXSAVE_MASK)) {
raise_exception_ra(env, EXCP06_ILLOP, ra);
}
/* The operand must be 64 byte aligned. */
if (ptr & 63) {
raise_exception_ra(env, EXCP0D_GPF, ra);
}
xstate_bv = cpu_ldq_data_ra(env, ptr + XO(header.xstate_bv), ra);
if ((int64_t)xstate_bv < 0) {
/* FIXME: Compact form. */
raise_exception_ra(env, EXCP0D_GPF, ra);
}
/* Standard form. */
/* The XSTATE_BV field must not set bits not present in XCR0. */
if (xstate_bv & ~env->xcr0) {
raise_exception_ra(env, EXCP0D_GPF, ra);
}
/* The XCOMP_BV field must be zero. Note that, as of the April 2016
revision, the description of the XSAVE Header (Vol 1, Sec 13.4.2)
describes only XCOMP_BV, but the description of the standard form
of XRSTOR (Vol 1, Sec 13.8.1) checks bytes 23:8 for zero, which
includes the next 64-bit field. */
xcomp_bv = cpu_ldq_data_ra(env, ptr + XO(header.xcomp_bv), ra);
reserve0 = cpu_ldq_data_ra(env, ptr + XO(header.reserve0), ra);
if (xcomp_bv || reserve0) {
raise_exception_ra(env, EXCP0D_GPF, ra);
}
if (rfbm & XSTATE_FP_MASK) {
if (xstate_bv & XSTATE_FP_MASK) {
do_xrstor_fpu(env, ptr, ra);
} else {
do_fninit(env);
memset(env->fpregs, 0, sizeof(env->fpregs));
}
}
if (rfbm & XSTATE_SSE_MASK) {
/* Note that the standard form of XRSTOR loads MXCSR from memory
whether or not the XSTATE_BV bit is set. */
do_xrstor_mxcsr(env, ptr, ra);
if (xstate_bv & XSTATE_SSE_MASK) {
do_xrstor_sse(env, ptr, ra);
} else {
do_clear_sse(env);
}
}
if (rfbm & XSTATE_YMM_MASK) {
if (xstate_bv & XSTATE_YMM_MASK) {
do_xrstor_ymmh(env, ptr + XO(avx_state), ra);
} else {
do_clear_ymmh(env);
}
}
if (rfbm & XSTATE_BNDREGS_MASK) {
if (xstate_bv & XSTATE_BNDREGS_MASK) {
do_xrstor_bndregs(env, ptr + XO(bndreg_state), ra);
env->hflags |= HF_MPX_IU_MASK;
} else {
memset(env->bnd_regs, 0, sizeof(env->bnd_regs));
env->hflags &= ~HF_MPX_IU_MASK;
}
}
if (rfbm & XSTATE_BNDCSR_MASK) {
if (xstate_bv & XSTATE_BNDCSR_MASK) {
do_xrstor_bndcsr(env, ptr + XO(bndcsr_state), ra);
} else {
memset(&env->bndcs_regs, 0, sizeof(env->bndcs_regs));
}
cpu_sync_bndcs_hflags(env);
}
if (rfbm & XSTATE_PKRU_MASK) {
uint64_t old_pkru = env->pkru;
if (xstate_bv & XSTATE_PKRU_MASK) {
do_xrstor_pkru(env, ptr + XO(pkru_state), ra);
} else {
env->pkru = 0;
}
if (env->pkru != old_pkru) {
CPUState *cs = env_cpu(env);
tlb_flush(cs);
}
}
}
#undef XO
void helper_xrstor(CPUX86State *env, target_ulong ptr, uint64_t rfbm)
{
do_xrstor(env, ptr, rfbm, GETPC());
}
#if defined(CONFIG_USER_ONLY)
void cpu_x86_fsave(CPUX86State *env, target_ulong ptr, int data32)
{
do_fsave(env, ptr, data32, 0);
}
void cpu_x86_frstor(CPUX86State *env, target_ulong ptr, int data32)
{
do_frstor(env, ptr, data32, 0);
}
void cpu_x86_fxsave(CPUX86State *env, target_ulong ptr)
{
do_fxsave(env, ptr, 0);
}
void cpu_x86_fxrstor(CPUX86State *env, target_ulong ptr)
{
do_fxrstor(env, ptr, 0);
}
void cpu_x86_xsave(CPUX86State *env, target_ulong ptr)
{
do_xsave(env, ptr, -1, get_xinuse(env), -1, 0);
}
void cpu_x86_xrstor(CPUX86State *env, target_ulong ptr)
{
do_xrstor(env, ptr, -1, 0);
}
#endif
uint64_t helper_xgetbv(CPUX86State *env, uint32_t ecx)
{
/* The OS must have enabled XSAVE. */
if (!(env->cr[4] & CR4_OSXSAVE_MASK)) {
raise_exception_ra(env, EXCP06_ILLOP, GETPC());
}
switch (ecx) {
case 0:
return env->xcr0;
case 1:
if (env->features[FEAT_XSAVE] & CPUID_XSAVE_XGETBV1) {
return env->xcr0 & get_xinuse(env);
}
break;
}
raise_exception_ra(env, EXCP0D_GPF, GETPC());
}
void helper_xsetbv(CPUX86State *env, uint32_t ecx, uint64_t mask)
{
uint32_t dummy, ena_lo, ena_hi;
uint64_t ena;
/* The OS must have enabled XSAVE. */
if (!(env->cr[4] & CR4_OSXSAVE_MASK)) {
raise_exception_ra(env, EXCP06_ILLOP, GETPC());
}
/* Only XCR0 is defined at present; the FPU may not be disabled. */
if (ecx != 0 || (mask & XSTATE_FP_MASK) == 0) {
goto do_gpf;
}
/* SSE can be disabled, but only if AVX is disabled too. */
if ((mask & (XSTATE_SSE_MASK | XSTATE_YMM_MASK)) == XSTATE_YMM_MASK) {
goto do_gpf;
}
/* Disallow enabling unimplemented features. */
cpu_x86_cpuid(env, 0x0d, 0, &ena_lo, &dummy, &dummy, &ena_hi);
ena = ((uint64_t)ena_hi << 32) | ena_lo;
if (mask & ~ena) {
goto do_gpf;
}
/* Disallow enabling only half of MPX. */
if ((mask ^ (mask * (XSTATE_BNDCSR_MASK / XSTATE_BNDREGS_MASK)))
& XSTATE_BNDCSR_MASK) {
goto do_gpf;
}
env->xcr0 = mask;
cpu_sync_bndcs_hflags(env);
cpu_sync_avx_hflag(env);
return;
do_gpf:
raise_exception_ra(env, EXCP0D_GPF, GETPC());
}
/* MMX/SSE */
/* XXX: optimize by storing fptt and fptags in the static cpu state */
#define SSE_DAZ 0x0040
#define SSE_RC_SHIFT 13
#define SSE_RC_MASK (3 << SSE_RC_SHIFT)
#define SSE_FZ 0x8000
void update_mxcsr_status(CPUX86State *env)
{
uint32_t mxcsr = env->mxcsr;
int rnd_type;
/* set rounding mode */
rnd_type = (mxcsr & SSE_RC_MASK) >> SSE_RC_SHIFT;
set_x86_rounding_mode(rnd_type, &env->sse_status);
/* Set exception flags. */
set_float_exception_flags((mxcsr & FPUS_IE ? float_flag_invalid : 0) |
(mxcsr & FPUS_ZE ? float_flag_divbyzero : 0) |
(mxcsr & FPUS_OE ? float_flag_overflow : 0) |
(mxcsr & FPUS_UE ? float_flag_underflow : 0) |
(mxcsr & FPUS_PE ? float_flag_inexact : 0),
&env->sse_status);
/* set denormals are zero */
set_flush_inputs_to_zero((mxcsr & SSE_DAZ) ? 1 : 0, &env->sse_status);
/* set flush to zero */
set_flush_to_zero((mxcsr & SSE_FZ) ? 1 : 0, &env->sse_status);
}
void update_mxcsr_from_sse_status(CPUX86State *env)
{
uint8_t flags = get_float_exception_flags(&env->sse_status);
/*
* The MXCSR denormal flag has opposite semantics to
* float_flag_input_denormal (the softfloat code sets that flag
* only when flushing input denormals to zero, but SSE sets it
* only when not flushing them to zero), so is not converted
* here.
*/
env->mxcsr |= ((flags & float_flag_invalid ? FPUS_IE : 0) |
(flags & float_flag_divbyzero ? FPUS_ZE : 0) |
(flags & float_flag_overflow ? FPUS_OE : 0) |
(flags & float_flag_underflow ? FPUS_UE : 0) |
(flags & float_flag_inexact ? FPUS_PE : 0) |
(flags & float_flag_output_denormal ? FPUS_UE | FPUS_PE :
0));
}
void helper_update_mxcsr(CPUX86State *env)
{
update_mxcsr_from_sse_status(env);
}
void helper_ldmxcsr(CPUX86State *env, uint32_t val)
{
cpu_set_mxcsr(env, val);
}
void helper_enter_mmx(CPUX86State *env)
{
env->fpstt = 0;
*(uint32_t *)(env->fptags) = 0;
*(uint32_t *)(env->fptags + 4) = 0;
}
void helper_emms(CPUX86State *env)
{
/* set to empty state */
*(uint32_t *)(env->fptags) = 0x01010101;
*(uint32_t *)(env->fptags + 4) = 0x01010101;
}
#define SHIFT 0
#include "ops_sse.h"
#define SHIFT 1
#include "ops_sse.h"
#define SHIFT 2
#include "ops_sse.h"
|