1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
|
/*
* x86 SVM helpers (sysemu only)
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "tcg/helper-tcg.h"
/* Secure Virtual Machine helpers */
static void svm_save_seg(CPUX86State *env, int mmu_idx, hwaddr addr,
const SegmentCache *sc)
{
cpu_stw_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, selector),
sc->selector, mmu_idx, 0);
cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, base),
sc->base, mmu_idx, 0);
cpu_stl_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, limit),
sc->limit, mmu_idx, 0);
cpu_stw_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, attrib),
((sc->flags >> 8) & 0xff)
| ((sc->flags >> 12) & 0x0f00),
mmu_idx, 0);
}
/*
* VMRUN and VMLOAD canonicalizes (i.e., sign-extend to bit 63) all base
* addresses in the segment registers that have been loaded.
*/
static inline void svm_canonicalization(CPUX86State *env, target_ulong *seg_base)
{
uint16_t shift_amt = 64 - cpu_x86_virtual_addr_width(env);
*seg_base = ((((long) *seg_base) << shift_amt) >> shift_amt);
}
static void svm_load_seg(CPUX86State *env, int mmu_idx, hwaddr addr,
SegmentCache *sc)
{
unsigned int flags;
sc->selector =
cpu_lduw_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, selector),
mmu_idx, 0);
sc->base =
cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, base),
mmu_idx, 0);
sc->limit =
cpu_ldl_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, limit),
mmu_idx, 0);
flags =
cpu_lduw_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, attrib),
mmu_idx, 0);
sc->flags = ((flags & 0xff) << 8) | ((flags & 0x0f00) << 12);
svm_canonicalization(env, &sc->base);
}
static void svm_load_seg_cache(CPUX86State *env, int mmu_idx,
hwaddr addr, int seg_reg)
{
SegmentCache sc;
svm_load_seg(env, mmu_idx, addr, &sc);
cpu_x86_load_seg_cache(env, seg_reg, sc.selector,
sc.base, sc.limit, sc.flags);
}
static inline bool is_efer_invalid_state (CPUX86State *env)
{
if (!(env->efer & MSR_EFER_SVME)) {
return true;
}
if (env->efer & MSR_EFER_RESERVED) {
return true;
}
if ((env->efer & (MSR_EFER_LMA | MSR_EFER_LME)) &&
!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
return true;
}
if ((env->efer & MSR_EFER_LME) && (env->cr[0] & CR0_PG_MASK)
&& !(env->cr[4] & CR4_PAE_MASK)) {
return true;
}
if ((env->efer & MSR_EFER_LME) && (env->cr[0] & CR0_PG_MASK)
&& !(env->cr[0] & CR0_PE_MASK)) {
return true;
}
if ((env->efer & MSR_EFER_LME) && (env->cr[0] & CR0_PG_MASK)
&& (env->cr[4] & CR4_PAE_MASK)
&& (env->segs[R_CS].flags & DESC_L_MASK)
&& (env->segs[R_CS].flags & DESC_B_MASK)) {
return true;
}
return false;
}
static inline bool virtual_gif_enabled(CPUX86State *env)
{
if (likely(env->hflags & HF_GUEST_MASK)) {
return (env->features[FEAT_SVM] & CPUID_SVM_VGIF)
&& (env->int_ctl & V_GIF_ENABLED_MASK);
}
return false;
}
static inline bool virtual_vm_load_save_enabled(CPUX86State *env, uint32_t exit_code, uintptr_t retaddr)
{
uint64_t lbr_ctl;
if (likely(env->hflags & HF_GUEST_MASK)) {
if (likely(!(env->hflags2 & HF2_NPT_MASK)) || !(env->efer & MSR_EFER_LMA)) {
cpu_vmexit(env, exit_code, 0, retaddr);
}
lbr_ctl = x86_ldl_phys(env_cpu(env), env->vm_vmcb + offsetof(struct vmcb,
control.lbr_ctl));
return (env->features[FEAT_SVM] & CPUID_SVM_V_VMSAVE_VMLOAD)
&& (lbr_ctl & V_VMLOAD_VMSAVE_ENABLED_MASK);
}
return false;
}
static inline bool virtual_gif_set(CPUX86State *env)
{
return !virtual_gif_enabled(env) || (env->int_ctl & V_GIF_MASK);
}
void helper_vmrun(CPUX86State *env, int aflag, int next_eip_addend)
{
CPUState *cs = env_cpu(env);
X86CPU *cpu = env_archcpu(env);
target_ulong addr;
uint64_t nested_ctl;
uint32_t event_inj;
uint32_t asid;
uint64_t new_cr0;
uint64_t new_cr3;
uint64_t new_cr4;
if (aflag == 2) {
addr = env->regs[R_EAX];
} else {
addr = (uint32_t)env->regs[R_EAX];
}
/* Exceptions are checked before the intercept. */
if (addr & (0xfff | ((~0ULL) << env_archcpu(env)->phys_bits))) {
raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC());
}
cpu_svm_check_intercept_param(env, SVM_EXIT_VMRUN, 0, GETPC());
qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmrun! " TARGET_FMT_lx "\n", addr);
env->vm_vmcb = addr;
/* save the current CPU state in the hsave page */
x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.gdtr.base),
env->gdt.base);
x86_stl_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit),
env->gdt.limit);
x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.idtr.base),
env->idt.base);
x86_stl_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.idtr.limit),
env->idt.limit);
x86_stq_phys(cs,
env->vm_hsave + offsetof(struct vmcb, save.cr0), env->cr[0]);
x86_stq_phys(cs,
env->vm_hsave + offsetof(struct vmcb, save.cr2), env->cr[2]);
x86_stq_phys(cs,
env->vm_hsave + offsetof(struct vmcb, save.cr3), env->cr[3]);
x86_stq_phys(cs,
env->vm_hsave + offsetof(struct vmcb, save.cr4), env->cr[4]);
x86_stq_phys(cs,
env->vm_hsave + offsetof(struct vmcb, save.dr6), env->dr[6]);
x86_stq_phys(cs,
env->vm_hsave + offsetof(struct vmcb, save.dr7), env->dr[7]);
x86_stq_phys(cs,
env->vm_hsave + offsetof(struct vmcb, save.efer), env->efer);
x86_stq_phys(cs,
env->vm_hsave + offsetof(struct vmcb, save.rflags),
cpu_compute_eflags(env));
svm_save_seg(env, MMU_PHYS_IDX,
env->vm_hsave + offsetof(struct vmcb, save.es),
&env->segs[R_ES]);
svm_save_seg(env, MMU_PHYS_IDX,
env->vm_hsave + offsetof(struct vmcb, save.cs),
&env->segs[R_CS]);
svm_save_seg(env, MMU_PHYS_IDX,
env->vm_hsave + offsetof(struct vmcb, save.ss),
&env->segs[R_SS]);
svm_save_seg(env, MMU_PHYS_IDX,
env->vm_hsave + offsetof(struct vmcb, save.ds),
&env->segs[R_DS]);
x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.rip),
env->eip + next_eip_addend);
x86_stq_phys(cs,
env->vm_hsave + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]);
x86_stq_phys(cs,
env->vm_hsave + offsetof(struct vmcb, save.rax), env->regs[R_EAX]);
/* load the interception bitmaps so we do not need to access the
vmcb in svm mode */
env->intercept = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
control.intercept));
env->intercept_cr_read = x86_lduw_phys(cs, env->vm_vmcb +
offsetof(struct vmcb,
control.intercept_cr_read));
env->intercept_cr_write = x86_lduw_phys(cs, env->vm_vmcb +
offsetof(struct vmcb,
control.intercept_cr_write));
env->intercept_dr_read = x86_lduw_phys(cs, env->vm_vmcb +
offsetof(struct vmcb,
control.intercept_dr_read));
env->intercept_dr_write = x86_lduw_phys(cs, env->vm_vmcb +
offsetof(struct vmcb,
control.intercept_dr_write));
env->intercept_exceptions = x86_ldl_phys(cs, env->vm_vmcb +
offsetof(struct vmcb,
control.intercept_exceptions
));
nested_ctl = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
control.nested_ctl));
asid = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
control.asid));
uint64_t msrpm_base_pa = x86_ldq_phys(cs, env->vm_vmcb +
offsetof(struct vmcb,
control.msrpm_base_pa));
uint64_t iopm_base_pa = x86_ldq_phys(cs, env->vm_vmcb +
offsetof(struct vmcb, control.iopm_base_pa));
if ((msrpm_base_pa & ~0xfff) >= (1ull << cpu->phys_bits) - SVM_MSRPM_SIZE) {
cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC());
}
if ((iopm_base_pa & ~0xfff) >= (1ull << cpu->phys_bits) - SVM_IOPM_SIZE) {
cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC());
}
env->nested_pg_mode = 0;
if (!cpu_svm_has_intercept(env, SVM_EXIT_VMRUN)) {
cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC());
}
if (asid == 0) {
cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC());
}
if (nested_ctl & SVM_NPT_ENABLED) {
env->nested_cr3 = x86_ldq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb,
control.nested_cr3));
env->hflags2 |= HF2_NPT_MASK;
env->nested_pg_mode = get_pg_mode(env) & PG_MODE_SVM_MASK;
tlb_flush_by_mmuidx(cs, 1 << MMU_NESTED_IDX);
}
/* enable intercepts */
env->hflags |= HF_GUEST_MASK;
env->tsc_offset = x86_ldq_phys(cs, env->vm_vmcb +
offsetof(struct vmcb, control.tsc_offset));
new_cr0 = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cr0));
if (new_cr0 & SVM_CR0_RESERVED_MASK) {
cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC());
}
if ((new_cr0 & CR0_NW_MASK) && !(new_cr0 & CR0_CD_MASK)) {
cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC());
}
new_cr3 = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cr3));
if ((env->efer & MSR_EFER_LMA) &&
(new_cr3 & ((~0ULL) << cpu->phys_bits))) {
cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC());
}
new_cr4 = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cr4));
if (new_cr4 & cr4_reserved_bits(env)) {
cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC());
}
/* clear exit_info_2 so we behave like the real hardware */
x86_stq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), 0);
cpu_x86_update_cr0(env, new_cr0);
cpu_x86_update_cr4(env, new_cr4);
cpu_x86_update_cr3(env, new_cr3);
env->cr[2] = x86_ldq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, save.cr2));
env->int_ctl = x86_ldl_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, control.int_ctl));
env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK);
if (env->int_ctl & V_INTR_MASKING_MASK) {
env->hflags2 |= HF2_VINTR_MASK;
if (env->eflags & IF_MASK) {
env->hflags2 |= HF2_HIF_MASK;
}
}
cpu_load_efer(env,
x86_ldq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, save.efer)));
env->eflags = 0;
cpu_load_eflags(env, x86_ldq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb,
save.rflags)),
~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
svm_load_seg_cache(env, MMU_PHYS_IDX,
env->vm_vmcb + offsetof(struct vmcb, save.es), R_ES);
svm_load_seg_cache(env, MMU_PHYS_IDX,
env->vm_vmcb + offsetof(struct vmcb, save.cs), R_CS);
svm_load_seg_cache(env, MMU_PHYS_IDX,
env->vm_vmcb + offsetof(struct vmcb, save.ss), R_SS);
svm_load_seg_cache(env, MMU_PHYS_IDX,
env->vm_vmcb + offsetof(struct vmcb, save.ds), R_DS);
svm_load_seg(env, MMU_PHYS_IDX,
env->vm_vmcb + offsetof(struct vmcb, save.idtr), &env->idt);
svm_load_seg(env, MMU_PHYS_IDX,
env->vm_vmcb + offsetof(struct vmcb, save.gdtr), &env->gdt);
env->eip = x86_ldq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, save.rip));
env->regs[R_ESP] = x86_ldq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, save.rsp));
env->regs[R_EAX] = x86_ldq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, save.rax));
env->dr[7] = x86_ldq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, save.dr7));
env->dr[6] = x86_ldq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, save.dr6));
#ifdef TARGET_X86_64
if (env->dr[6] & DR_RESERVED_MASK) {
cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC());
}
if (env->dr[7] & DR_RESERVED_MASK) {
cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC());
}
#endif
if (is_efer_invalid_state(env)) {
cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC());
}
switch (x86_ldub_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, control.tlb_ctl))) {
case TLB_CONTROL_DO_NOTHING:
break;
case TLB_CONTROL_FLUSH_ALL_ASID:
/* FIXME: this is not 100% correct but should work for now */
tlb_flush(cs);
break;
}
env->hflags2 |= HF2_GIF_MASK;
if (ctl_has_irq(env)) {
CPUState *cs = env_cpu(env);
cs->interrupt_request |= CPU_INTERRUPT_VIRQ;
}
if (virtual_gif_set(env)) {
env->hflags2 |= HF2_VGIF_MASK;
}
/* maybe we need to inject an event */
event_inj = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
control.event_inj));
if (event_inj & SVM_EVTINJ_VALID) {
uint8_t vector = event_inj & SVM_EVTINJ_VEC_MASK;
uint16_t valid_err = event_inj & SVM_EVTINJ_VALID_ERR;
uint32_t event_inj_err = x86_ldl_phys(cs, env->vm_vmcb +
offsetof(struct vmcb,
control.event_inj_err));
qemu_log_mask(CPU_LOG_TB_IN_ASM, "Injecting(%#hx): ", valid_err);
/* FIXME: need to implement valid_err */
switch (event_inj & SVM_EVTINJ_TYPE_MASK) {
case SVM_EVTINJ_TYPE_INTR:
cs->exception_index = vector;
env->error_code = event_inj_err;
env->exception_is_int = 0;
env->exception_next_eip = -1;
qemu_log_mask(CPU_LOG_TB_IN_ASM, "INTR");
/* XXX: is it always correct? */
do_interrupt_x86_hardirq(env, vector, 1);
break;
case SVM_EVTINJ_TYPE_NMI:
cs->exception_index = EXCP02_NMI;
env->error_code = event_inj_err;
env->exception_is_int = 0;
env->exception_next_eip = env->eip;
qemu_log_mask(CPU_LOG_TB_IN_ASM, "NMI");
cpu_loop_exit(cs);
break;
case SVM_EVTINJ_TYPE_EXEPT:
if (vector == EXCP02_NMI || vector >= 31) {
cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC());
}
cs->exception_index = vector;
env->error_code = event_inj_err;
env->exception_is_int = 0;
env->exception_next_eip = -1;
qemu_log_mask(CPU_LOG_TB_IN_ASM, "EXEPT");
cpu_loop_exit(cs);
break;
case SVM_EVTINJ_TYPE_SOFT:
cs->exception_index = vector;
env->error_code = event_inj_err;
env->exception_is_int = 1;
env->exception_next_eip = env->eip;
qemu_log_mask(CPU_LOG_TB_IN_ASM, "SOFT");
cpu_loop_exit(cs);
break;
default:
cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC());
break;
}
qemu_log_mask(CPU_LOG_TB_IN_ASM, " %#x %#x\n", cs->exception_index,
env->error_code);
}
}
void helper_vmmcall(CPUX86State *env)
{
cpu_svm_check_intercept_param(env, SVM_EXIT_VMMCALL, 0, GETPC());
raise_exception(env, EXCP06_ILLOP);
}
void helper_vmload(CPUX86State *env, int aflag)
{
int mmu_idx = MMU_PHYS_IDX;
target_ulong addr;
if (aflag == 2) {
addr = env->regs[R_EAX];
} else {
addr = (uint32_t)env->regs[R_EAX];
}
/* Exceptions are checked before the intercept. */
if (addr & (0xfff | ((~0ULL) << env_archcpu(env)->phys_bits))) {
raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC());
}
cpu_svm_check_intercept_param(env, SVM_EXIT_VMLOAD, 0, GETPC());
if (virtual_vm_load_save_enabled(env, SVM_EXIT_VMLOAD, GETPC())) {
mmu_idx = MMU_NESTED_IDX;
}
svm_load_seg_cache(env, mmu_idx,
addr + offsetof(struct vmcb, save.fs), R_FS);
svm_load_seg_cache(env, mmu_idx,
addr + offsetof(struct vmcb, save.gs), R_GS);
svm_load_seg(env, mmu_idx,
addr + offsetof(struct vmcb, save.tr), &env->tr);
svm_load_seg(env, mmu_idx,
addr + offsetof(struct vmcb, save.ldtr), &env->ldt);
#ifdef TARGET_X86_64
env->kernelgsbase =
cpu_ldq_mmuidx_ra(env,
addr + offsetof(struct vmcb, save.kernel_gs_base),
mmu_idx, 0);
env->lstar =
cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.lstar),
mmu_idx, 0);
env->cstar =
cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.cstar),
mmu_idx, 0);
env->fmask =
cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sfmask),
mmu_idx, 0);
svm_canonicalization(env, &env->kernelgsbase);
#endif
env->star =
cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.star),
mmu_idx, 0);
env->sysenter_cs =
cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sysenter_cs),
mmu_idx, 0);
env->sysenter_esp =
cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sysenter_esp),
mmu_idx, 0);
env->sysenter_eip =
cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sysenter_eip),
mmu_idx, 0);
}
void helper_vmsave(CPUX86State *env, int aflag)
{
int mmu_idx = MMU_PHYS_IDX;
target_ulong addr;
if (aflag == 2) {
addr = env->regs[R_EAX];
} else {
addr = (uint32_t)env->regs[R_EAX];
}
/* Exceptions are checked before the intercept. */
if (addr & (0xfff | ((~0ULL) << env_archcpu(env)->phys_bits))) {
raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC());
}
cpu_svm_check_intercept_param(env, SVM_EXIT_VMSAVE, 0, GETPC());
if (virtual_vm_load_save_enabled(env, SVM_EXIT_VMSAVE, GETPC())) {
mmu_idx = MMU_NESTED_IDX;
}
svm_save_seg(env, mmu_idx, addr + offsetof(struct vmcb, save.fs),
&env->segs[R_FS]);
svm_save_seg(env, mmu_idx, addr + offsetof(struct vmcb, save.gs),
&env->segs[R_GS]);
svm_save_seg(env, mmu_idx, addr + offsetof(struct vmcb, save.tr),
&env->tr);
svm_save_seg(env, mmu_idx, addr + offsetof(struct vmcb, save.ldtr),
&env->ldt);
#ifdef TARGET_X86_64
cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.kernel_gs_base),
env->kernelgsbase, mmu_idx, 0);
cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.lstar),
env->lstar, mmu_idx, 0);
cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.cstar),
env->cstar, mmu_idx, 0);
cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sfmask),
env->fmask, mmu_idx, 0);
#endif
cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.star),
env->star, mmu_idx, 0);
cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sysenter_cs),
env->sysenter_cs, mmu_idx, 0);
cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sysenter_esp),
env->sysenter_esp, mmu_idx, 0);
cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sysenter_eip),
env->sysenter_eip, mmu_idx, 0);
}
void helper_stgi(CPUX86State *env)
{
cpu_svm_check_intercept_param(env, SVM_EXIT_STGI, 0, GETPC());
if (virtual_gif_enabled(env)) {
env->int_ctl |= V_GIF_MASK;
env->hflags2 |= HF2_VGIF_MASK;
} else {
env->hflags2 |= HF2_GIF_MASK;
}
}
void helper_clgi(CPUX86State *env)
{
cpu_svm_check_intercept_param(env, SVM_EXIT_CLGI, 0, GETPC());
if (virtual_gif_enabled(env)) {
env->int_ctl &= ~V_GIF_MASK;
env->hflags2 &= ~HF2_VGIF_MASK;
} else {
env->hflags2 &= ~HF2_GIF_MASK;
}
}
bool cpu_svm_has_intercept(CPUX86State *env, uint32_t type)
{
switch (type) {
case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR0 + 8:
if (env->intercept_cr_read & (1 << (type - SVM_EXIT_READ_CR0))) {
return true;
}
break;
case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR0 + 8:
if (env->intercept_cr_write & (1 << (type - SVM_EXIT_WRITE_CR0))) {
return true;
}
break;
case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR0 + 7:
if (env->intercept_dr_read & (1 << (type - SVM_EXIT_READ_DR0))) {
return true;
}
break;
case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR0 + 7:
if (env->intercept_dr_write & (1 << (type - SVM_EXIT_WRITE_DR0))) {
return true;
}
break;
case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 31:
if (env->intercept_exceptions & (1 << (type - SVM_EXIT_EXCP_BASE))) {
return true;
}
break;
default:
if (env->intercept & (1ULL << (type - SVM_EXIT_INTR))) {
return true;
}
break;
}
return false;
}
void cpu_svm_check_intercept_param(CPUX86State *env, uint32_t type,
uint64_t param, uintptr_t retaddr)
{
CPUState *cs = env_cpu(env);
if (likely(!(env->hflags & HF_GUEST_MASK))) {
return;
}
if (!cpu_svm_has_intercept(env, type)) {
return;
}
if (type == SVM_EXIT_MSR) {
/* FIXME: this should be read in at vmrun (faster this way?) */
uint64_t addr = x86_ldq_phys(cs, env->vm_vmcb +
offsetof(struct vmcb,
control.msrpm_base_pa));
uint32_t t0, t1;
switch ((uint32_t)env->regs[R_ECX]) {
case 0 ... 0x1fff:
t0 = (env->regs[R_ECX] * 2) % 8;
t1 = (env->regs[R_ECX] * 2) / 8;
break;
case 0xc0000000 ... 0xc0001fff:
t0 = (8192 + env->regs[R_ECX] - 0xc0000000) * 2;
t1 = (t0 / 8);
t0 %= 8;
break;
case 0xc0010000 ... 0xc0011fff:
t0 = (16384 + env->regs[R_ECX] - 0xc0010000) * 2;
t1 = (t0 / 8);
t0 %= 8;
break;
default:
cpu_vmexit(env, type, param, retaddr);
t0 = 0;
t1 = 0;
break;
}
if (x86_ldub_phys(cs, addr + t1) & ((1 << param) << t0)) {
cpu_vmexit(env, type, param, retaddr);
}
return;
}
cpu_vmexit(env, type, param, retaddr);
}
void helper_svm_check_intercept(CPUX86State *env, uint32_t type)
{
cpu_svm_check_intercept_param(env, type, 0, GETPC());
}
void helper_svm_check_io(CPUX86State *env, uint32_t port, uint32_t param,
uint32_t next_eip_addend)
{
CPUState *cs = env_cpu(env);
if (env->intercept & (1ULL << (SVM_EXIT_IOIO - SVM_EXIT_INTR))) {
/* FIXME: this should be read in at vmrun (faster this way?) */
uint64_t addr = x86_ldq_phys(cs, env->vm_vmcb +
offsetof(struct vmcb, control.iopm_base_pa));
uint16_t mask = (1 << ((param >> 4) & 7)) - 1;
if (x86_lduw_phys(cs, addr + port / 8) & (mask << (port & 7))) {
/* next env->eip */
x86_stq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
env->eip + next_eip_addend);
cpu_vmexit(env, SVM_EXIT_IOIO, param | (port << 16), GETPC());
}
}
}
void cpu_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1,
uintptr_t retaddr)
{
CPUState *cs = env_cpu(env);
cpu_restore_state(cs, retaddr);
qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmexit(%08x, %016" PRIx64 ", %016"
PRIx64 ", " TARGET_FMT_lx ")!\n",
exit_code, exit_info_1,
x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
control.exit_info_2)),
env->eip);
cs->exception_index = EXCP_VMEXIT;
x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_code),
exit_code);
x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
control.exit_info_1), exit_info_1),
/* remove any pending exception */
env->old_exception = -1;
cpu_loop_exit(cs);
}
void do_vmexit(CPUX86State *env)
{
CPUState *cs = env_cpu(env);
if (env->hflags & HF_INHIBIT_IRQ_MASK) {
x86_stl_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, control.int_state),
SVM_INTERRUPT_SHADOW_MASK);
env->hflags &= ~HF_INHIBIT_IRQ_MASK;
} else {
x86_stl_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, control.int_state), 0);
}
env->hflags2 &= ~HF2_NPT_MASK;
tlb_flush_by_mmuidx(cs, 1 << MMU_NESTED_IDX);
/* Save the VM state in the vmcb */
svm_save_seg(env, MMU_PHYS_IDX,
env->vm_vmcb + offsetof(struct vmcb, save.es),
&env->segs[R_ES]);
svm_save_seg(env, MMU_PHYS_IDX,
env->vm_vmcb + offsetof(struct vmcb, save.cs),
&env->segs[R_CS]);
svm_save_seg(env, MMU_PHYS_IDX,
env->vm_vmcb + offsetof(struct vmcb, save.ss),
&env->segs[R_SS]);
svm_save_seg(env, MMU_PHYS_IDX,
env->vm_vmcb + offsetof(struct vmcb, save.ds),
&env->segs[R_DS]);
x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base),
env->gdt.base);
x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit),
env->gdt.limit);
x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.idtr.base),
env->idt.base);
x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit),
env->idt.limit);
x86_stq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, save.efer), env->efer);
x86_stq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, save.cr0), env->cr[0]);
x86_stq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, save.cr2), env->cr[2]);
x86_stq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, save.cr3), env->cr[3]);
x86_stq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, save.cr4), env->cr[4]);
x86_stl_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, control.int_ctl), env->int_ctl);
x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.rflags),
cpu_compute_eflags(env));
x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.rip),
env->eip);
x86_stq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]);
x86_stq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, save.rax), env->regs[R_EAX]);
x86_stq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, save.dr7), env->dr[7]);
x86_stq_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, save.dr6), env->dr[6]);
x86_stb_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cpl),
env->hflags & HF_CPL_MASK);
/* Reload the host state from vm_hsave */
env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK);
env->hflags &= ~HF_GUEST_MASK;
env->intercept = 0;
env->intercept_exceptions = 0;
cs->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
env->int_ctl = 0;
env->tsc_offset = 0;
env->gdt.base = x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb,
save.gdtr.base));
env->gdt.limit = x86_ldl_phys(cs, env->vm_hsave + offsetof(struct vmcb,
save.gdtr.limit));
env->idt.base = x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb,
save.idtr.base));
env->idt.limit = x86_ldl_phys(cs, env->vm_hsave + offsetof(struct vmcb,
save.idtr.limit));
cpu_x86_update_cr0(env, x86_ldq_phys(cs,
env->vm_hsave + offsetof(struct vmcb,
save.cr0)) |
CR0_PE_MASK);
cpu_x86_update_cr4(env, x86_ldq_phys(cs,
env->vm_hsave + offsetof(struct vmcb,
save.cr4)));
cpu_x86_update_cr3(env, x86_ldq_phys(cs,
env->vm_hsave + offsetof(struct vmcb,
save.cr3)));
/* we need to set the efer after the crs so the hidden flags get
set properly */
cpu_load_efer(env, x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb,
save.efer)));
env->eflags = 0;
cpu_load_eflags(env, x86_ldq_phys(cs,
env->vm_hsave + offsetof(struct vmcb,
save.rflags)),
~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK |
VM_MASK));
svm_load_seg_cache(env, MMU_PHYS_IDX,
env->vm_hsave + offsetof(struct vmcb, save.es), R_ES);
svm_load_seg_cache(env, MMU_PHYS_IDX,
env->vm_hsave + offsetof(struct vmcb, save.cs), R_CS);
svm_load_seg_cache(env, MMU_PHYS_IDX,
env->vm_hsave + offsetof(struct vmcb, save.ss), R_SS);
svm_load_seg_cache(env, MMU_PHYS_IDX,
env->vm_hsave + offsetof(struct vmcb, save.ds), R_DS);
env->eip = x86_ldq_phys(cs,
env->vm_hsave + offsetof(struct vmcb, save.rip));
env->regs[R_ESP] = x86_ldq_phys(cs, env->vm_hsave +
offsetof(struct vmcb, save.rsp));
env->regs[R_EAX] = x86_ldq_phys(cs, env->vm_hsave +
offsetof(struct vmcb, save.rax));
env->dr[6] = x86_ldq_phys(cs,
env->vm_hsave + offsetof(struct vmcb, save.dr6));
env->dr[7] = x86_ldq_phys(cs,
env->vm_hsave + offsetof(struct vmcb, save.dr7));
/* other setups */
x86_stl_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info),
x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
control.event_inj)));
x86_stl_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info_err),
x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
control.event_inj_err)));
x86_stl_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, control.event_inj), 0);
env->hflags2 &= ~HF2_GIF_MASK;
env->hflags2 &= ~HF2_VGIF_MASK;
/* FIXME: Resets the current ASID register to zero (host ASID). */
/* Clears the V_IRQ and V_INTR_MASKING bits inside the processor. */
/* Clears the TSC_OFFSET inside the processor. */
/* If the host is in PAE mode, the processor reloads the host's PDPEs
from the page table indicated the host's CR3. If the PDPEs contain
illegal state, the processor causes a shutdown. */
/* Disables all breakpoints in the host DR7 register. */
/* Checks the reloaded host state for consistency. */
/* If the host's rIP reloaded by #VMEXIT is outside the limit of the
host's code segment or non-canonical (in the case of long mode), a
#GP fault is delivered inside the host. */
}
|