1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
/*
* PMU emulation helpers for TCG IBM POWER chips
*
* Copyright IBM Corp. 2021
*
* Authors:
* Daniel Henrique Barboza <danielhb413@gmail.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "helper_regs.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "hw/ppc/ppc.h"
#include "power8-pmu.h"
#if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY)
static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn)
{
if (sprn == SPR_POWER_PMC1) {
return env->spr[SPR_POWER_MMCR0] & MMCR0_PMC1CE;
}
return env->spr[SPR_POWER_MMCR0] & MMCR0_PMCjCE;
}
/*
* Called after MMCR0 or MMCR1 changes to update pmc_ins_cnt and pmc_cyc_cnt.
* hflags must subsequently be updated.
*/
static void pmu_update_summaries(CPUPPCState *env)
{
target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0];
target_ulong mmcr1 = env->spr[SPR_POWER_MMCR1];
int ins_cnt = 0;
int cyc_cnt = 0;
if (mmcr0 & MMCR0_FC) {
goto out;
}
if (!(mmcr0 & MMCR0_FC14) && mmcr1 != 0) {
target_ulong sel;
sel = extract64(mmcr1, MMCR1_PMC1EVT_EXTR, MMCR1_EVT_SIZE);
switch (sel) {
case 0x02:
case 0xfe:
ins_cnt |= 1 << 1;
break;
case 0x1e:
case 0xf0:
cyc_cnt |= 1 << 1;
break;
}
sel = extract64(mmcr1, MMCR1_PMC2EVT_EXTR, MMCR1_EVT_SIZE);
ins_cnt |= (sel == 0x02) << 2;
cyc_cnt |= (sel == 0x1e) << 2;
sel = extract64(mmcr1, MMCR1_PMC3EVT_EXTR, MMCR1_EVT_SIZE);
ins_cnt |= (sel == 0x02) << 3;
cyc_cnt |= (sel == 0x1e) << 3;
sel = extract64(mmcr1, MMCR1_PMC4EVT_EXTR, MMCR1_EVT_SIZE);
ins_cnt |= ((sel == 0xfa) || (sel == 0x2)) << 4;
cyc_cnt |= (sel == 0x1e) << 4;
}
ins_cnt |= !(mmcr0 & MMCR0_FC56) << 5;
cyc_cnt |= !(mmcr0 & MMCR0_FC56) << 6;
out:
env->pmc_ins_cnt = ins_cnt;
env->pmc_cyc_cnt = cyc_cnt;
}
void pmu_mmcr01_updated(CPUPPCState *env)
{
pmu_update_summaries(env);
hreg_update_pmu_hflags(env);
/*
* Should this update overflow timers (if mmcr0 is updated) so they
* get set in cpu_post_load?
*/
}
static bool pmu_increment_insns(CPUPPCState *env, uint32_t num_insns)
{
target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0];
unsigned ins_cnt = env->pmc_ins_cnt;
bool overflow_triggered = false;
target_ulong tmp;
if (ins_cnt & (1 << 1)) {
tmp = env->spr[SPR_POWER_PMC1];
tmp += num_insns;
if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMC1CE)) {
tmp = PMC_COUNTER_NEGATIVE_VAL;
overflow_triggered = true;
}
env->spr[SPR_POWER_PMC1] = tmp;
}
if (ins_cnt & (1 << 2)) {
tmp = env->spr[SPR_POWER_PMC2];
tmp += num_insns;
if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
tmp = PMC_COUNTER_NEGATIVE_VAL;
overflow_triggered = true;
}
env->spr[SPR_POWER_PMC2] = tmp;
}
if (ins_cnt & (1 << 3)) {
tmp = env->spr[SPR_POWER_PMC3];
tmp += num_insns;
if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
tmp = PMC_COUNTER_NEGATIVE_VAL;
overflow_triggered = true;
}
env->spr[SPR_POWER_PMC3] = tmp;
}
if (ins_cnt & (1 << 4)) {
target_ulong mmcr1 = env->spr[SPR_POWER_MMCR1];
int sel = extract64(mmcr1, MMCR1_PMC4EVT_EXTR, MMCR1_EVT_SIZE);
if (sel == 0x02 || (env->spr[SPR_CTRL] & CTRL_RUN)) {
tmp = env->spr[SPR_POWER_PMC4];
tmp += num_insns;
if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
tmp = PMC_COUNTER_NEGATIVE_VAL;
overflow_triggered = true;
}
env->spr[SPR_POWER_PMC4] = tmp;
}
}
if (ins_cnt & (1 << 5)) {
tmp = env->spr[SPR_POWER_PMC5];
tmp += num_insns;
if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
tmp = PMC_COUNTER_NEGATIVE_VAL;
overflow_triggered = true;
}
env->spr[SPR_POWER_PMC5] = tmp;
}
return overflow_triggered;
}
static void pmu_update_cycles(CPUPPCState *env)
{
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint64_t time_delta = now - env->pmu_base_time;
int sprn, cyc_cnt = env->pmc_cyc_cnt;
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
if (cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) {
/*
* The pseries and powernv clock runs at 1Ghz, meaning
* that 1 nanosec equals 1 cycle.
*/
env->spr[sprn] += time_delta;
}
}
/* Update base_time for future calculations */
env->pmu_base_time = now;
}
/*
* Helper function to retrieve the cycle overflow timer of the
* 'sprn' counter.
*/
static QEMUTimer *get_cyc_overflow_timer(CPUPPCState *env, int sprn)
{
return env->pmu_cyc_overflow_timers[sprn - SPR_POWER_PMC1];
}
static void pmc_update_overflow_timer(CPUPPCState *env, int sprn)
{
QEMUTimer *pmc_overflow_timer = get_cyc_overflow_timer(env, sprn);
int64_t timeout;
/*
* PMC5 does not have an overflow timer and this pointer
* will be NULL.
*/
if (!pmc_overflow_timer) {
return;
}
if (!(env->pmc_cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) ||
!pmc_has_overflow_enabled(env, sprn)) {
/* Overflow timer is not needed for this counter */
timer_del(pmc_overflow_timer);
return;
}
if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL) {
timeout = 0;
} else {
timeout = PMC_COUNTER_NEGATIVE_VAL - env->spr[sprn];
}
/*
* Use timer_mod_anticipate() because an overflow timer might
* be already running for this PMC.
*/
timer_mod_anticipate(pmc_overflow_timer, env->pmu_base_time + timeout);
}
static void pmu_update_overflow_timers(CPUPPCState *env)
{
int sprn;
/*
* Scroll through all PMCs and start counter overflow timers for
* PM_CYC events, if needed.
*/
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
pmc_update_overflow_timer(env, sprn);
}
}
static void pmu_delete_timers(CPUPPCState *env)
{
QEMUTimer *pmc_overflow_timer;
int sprn;
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
pmc_overflow_timer = get_cyc_overflow_timer(env, sprn);
if (pmc_overflow_timer) {
timer_del(pmc_overflow_timer);
}
}
}
void helper_store_mmcr0(CPUPPCState *env, target_ulong value)
{
pmu_update_cycles(env);
env->spr[SPR_POWER_MMCR0] = value;
pmu_mmcr01_updated(env);
/* Update cycle overflow timers with the current MMCR0 state */
pmu_update_overflow_timers(env);
}
void helper_store_mmcr1(CPUPPCState *env, uint64_t value)
{
pmu_update_cycles(env);
env->spr[SPR_POWER_MMCR1] = value;
pmu_mmcr01_updated(env);
}
target_ulong helper_read_pmc(CPUPPCState *env, uint32_t sprn)
{
pmu_update_cycles(env);
return env->spr[sprn];
}
void helper_store_pmc(CPUPPCState *env, uint32_t sprn, uint64_t value)
{
pmu_update_cycles(env);
env->spr[sprn] = value;
pmc_update_overflow_timer(env, sprn);
}
static void fire_PMC_interrupt(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
pmu_update_cycles(env);
if (env->spr[SPR_POWER_MMCR0] & MMCR0_FCECE) {
env->spr[SPR_POWER_MMCR0] &= ~MMCR0_FCECE;
env->spr[SPR_POWER_MMCR0] |= MMCR0_FC;
/* Changing MMCR0_FC requires summaries and hflags update */
pmu_mmcr01_updated(env);
/*
* Delete all pending timers if we need to freeze
* the PMC. We'll restart them when the PMC starts
* running again.
*/
pmu_delete_timers(env);
}
if (env->spr[SPR_POWER_MMCR0] & MMCR0_PMAE) {
/* These MMCR0 bits do not require summaries or hflags update. */
env->spr[SPR_POWER_MMCR0] &= ~MMCR0_PMAE;
env->spr[SPR_POWER_MMCR0] |= MMCR0_PMAO;
}
raise_ebb_perfm_exception(env);
}
void helper_handle_pmc5_overflow(CPUPPCState *env)
{
env->spr[SPR_POWER_PMC5] = PMC_COUNTER_NEGATIVE_VAL;
fire_PMC_interrupt(env_archcpu(env));
}
/* This helper assumes that the PMC is running. */
void helper_insns_inc(CPUPPCState *env, uint32_t num_insns)
{
bool overflow_triggered;
PowerPCCPU *cpu;
overflow_triggered = pmu_increment_insns(env, num_insns);
if (overflow_triggered) {
cpu = env_archcpu(env);
fire_PMC_interrupt(cpu);
}
}
static void cpu_ppc_pmu_timer_cb(void *opaque)
{
PowerPCCPU *cpu = opaque;
fire_PMC_interrupt(cpu);
}
void cpu_ppc_pmu_init(CPUPPCState *env)
{
PowerPCCPU *cpu = env_archcpu(env);
int i, sprn;
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
if (sprn == SPR_POWER_PMC5) {
continue;
}
i = sprn - SPR_POWER_PMC1;
env->pmu_cyc_overflow_timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL,
&cpu_ppc_pmu_timer_cb,
cpu);
}
}
#endif /* defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) */
|