1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
/*
Arnon-Collins-McCallum adjecncy for 2-D CAD's
c : a single-point cell in the 1D CAD.
A : a primitive squarefree integral polynomial.
I : a logarithmic standard interval isolating a root of A.
This root is the cell c. We have a restriction on I
that it be contained in the union of c and its left and
right neighbors. We don't allow a 1-point interval.
P : the projection factor set.
*/
#include "oldadj.h"
Word ACMADJ2D(Word c, Word c_l, Word c_r, Word P)
{
Word P_2,L,t,i,x1,x2,s,e,Q,y1,y2,p,M,b,Ip,ip1,ip2,i1,i2,i_l,i_r;
Word H,h1,h2,p1,p2,p3,d,J,K,G,I,A,R,pp,ep,j1,j2,P1,P2,Sol,k,nl,nr,il,ir;
Step0: /* Shouldn't even have been called. */
if (LENGTH(LELTI(c,CHILD)) <= 0) {
Sol = NIL;
goto Return; }
Step1: /* Get (A,I) defining c. */
s = LELTI(c,SAMPLE);
FIRST3(s,&M,&I,&b);
ANFAF(M,I,LAST(b),&A,&Ip);
FIRST2(Ip,&ip1,&ip2);
i1 = RNLBRN(ip1);
i2 = RNLBRN(ip2);
t = 0;
Step2: /* Get sample points for c_l and c_r. */
i_l = RNLBRN(SPRLC(c_l));
i_r = RNLBRN(SPRLC(c_r));
Step3: /* Either I is an open SI containing c, or H and I are consecutive
SI's such that H = (h1,h2) and I = (i1,i2) and h2 = i1 = coordinate of c. */
if (LBRNCOMP(i1,i2) != 0) {
H = 0;
t = LBRNSIGN(IUPLBREVAL(A,i2)); if (t == 0) SWRITE("Error in ACMADJ2D\n");
while(LBRNCOMP(i1,i_l) < 0 || LBRNCOMP(i_r,i2) < 0) {
i = LSIM(i1,i2);
s = LBRNSIGN(IUPLBREVAL(A,i));
if (s == 0) {
i1 = i; i2 = i; break; }
if (s == t)
i2 = i;
else
i1 = i; } }
if (LBRNCOMP(i1,i2) == 0) {
h2 = i1;
p1 = SECOND(LBRNDIF(i1,i_l));
p2 = SECOND(LBRNDIF(i_r,i1));
if (i1 == 0) p3 = 1; else p3 = SECOND(i1);
p = 4 + IMAX(p1,IMAX(p2,p3)); /* The 4 is arbitrary. */
d = LBRNFIE(1,-p);
h1 = LBRNDIF(h2,d);
i2 = LBRNSUM(i1,d);
H = LIST2(h1,h2); }
I = LIST2(i1,i2);
Step4: /* Initialize main loop. */
P_2 = LELTI(P,2);
L = LLSISS(c);
if (L == NIL) {
Sol = ASYS1(A,H,I,P_2,c_l,c_r);
goto Return;
}
R = NIL;
ep = FIRST(L);
Step5: /* Loop over each section cell in the stack. */
for(i = 2; L != NIL; i += 2) {
ADV(L,&e,&L);
x1 = 0;
x2 = 0;
FIRST3(e,&s,&J,&K);
for(Q = P_2; s != NIL; s = RED(s), Q = RED(Q)) {
if (FIRST(s) == 0) {
p = LELTI(FIRST(Q),PO_POLY);
if (H == 0) {
G = RIIFACMA(I,A,t,p,J,K); I = G; }
else
G = RIIFACMABR(p,J,K,&H,&I);
FIRST2(DNCAC(e,G,p),&y1,&y2);
x1 += y1;
x2 += y2; } }
R = COMP(LIST2(x1,x2),R); }
R = INV(R);
Step6: /* Determine number of negative asymptotes. */
J = SECOND(ep);
j2 = FIRST(J);
i2 = SECOND(I);
if (H == 0)
i1 = FIRST(I);
else
i1 = FIRST(H);
x1 = 0; x2 = 0;
/* for(Q = P_2; s != NIL; s = RED(s), Q = RED(Q)) { OLD WAY */
for(Q = P_2; Q != NIL; Q = RED(Q)) {
p = LELTI(FIRST(Q),PO_POLY);
pp = PTMV(2,p);
P1 = IPIPP(1,IPLBREVAL(2,pp,i1));
P2 = IPIPP(1,IPLBREVAL(2,pp,i2));
j1 = LBRNNEG(IUPLRB(P1));
if (LBRNCOMP(j1,j2) < 0)
x1 += LENGTH(IPRRILBRI(P1,LIST2(j1,j2)));
j1 = LBRNNEG(IUPLRB(P2));
if (LBRNCOMP(j1,j2) < 0)
x2 += LENGTH(IPRRILBRI(P2,LIST2(j1,j2))); }
Step7: /* Construct adjacency assignment list. */
Sol = NIL;
k = FIRST(LELTI(c,INDX));
nl = LENGTH(LELTI(c_l,CHILD));
nr = LENGTH(LELTI(c_r,CHILD));
il = 2;
ir = 2;
while(x1 > 0) {
Sol= COMP(LIST2(LIST2(k-1,il),LIST2(k,AD2D_N_In)),Sol);
il += 2;
x1--; }
while(x2 > 0) {
Sol= COMP(LIST2(LIST2(k,AD2D_N_In),LIST2(k+1,ir)),Sol);
ir += 2;
x2--; }
for(i = 2; R != NIL; i += 2, R = RED(R)) {
FIRST2(FIRST(R),&x1,&x2);
while(x1 > 0) {
Sol= COMP(LIST2(LIST2(k-1,il),LIST2(k,i)),Sol);
il += 2;
x1--; }
while(x2 > 0) {
Sol= COMP(LIST2(LIST2(k,i),LIST2(k+1,ir)),Sol);
ir += 2;
x2--; } }
while(il < nl) {
Sol= COMP(LIST2(LIST2(k-1,il),LIST2(k,AD2D_Infy)),Sol);
il += 2; }
while(ir < nr) {
Sol= COMP(LIST2(LIST2(k,AD2D_Infy),LIST2(k+1,ir)),Sol);
ir += 2; }
Return: /* Prepare to return. */
return Sol;
}
Word ASYS1(Word M, Word H, Word I, Word P2, Word c_l, Word c_r)
{
Word P,p,t,i1,i2,L1p,L2p,L1n,L2n,n1p,n1n,n2p,n2n,p1,p2,L1,L2,J,j,z,Sol,i,L,S,Ip;
Step1: /* Refine I so that for each p in P_2 p(x,0) has no sign variations in I. */
if (H != 0)
I = ASYS2(M,H,I,P2);
else {
t = LBRNSIGN(IUPLBREVAL(M,SECOND(I))); /* Get trend of M in I. */
for(P = P2; P != NIL; P = RED(P)) {
p = LELTI(FIRST(P),PO_POLY);
p = IPEVAL(2,p,2,0);
while(TSVSLI(p,I)) {
if (LBRIIBISECT(I,M,t,&J)) {
FIRST2(I,&i1,&i2);
I = ASYS2(M,LIST2(i1,FIRST(J)),LIST2(FIRST(J),i2),P2);
goto Step2; }
else
I = J; } }
if (LBRIIBISECT(I,M,t,&J)) {
FIRST2(I,&i1,&i2);
j = FIRST(J);
I = LIST2(LSIM(i1,j),LSIM(j,i2)); }
else
I = J; }
Step2: /* Get number of roots each way. */
FIRST2(I,&i1,&i2);
L1p = NIL; L1n = NIL; L2p = NIL; L2n = NIL;
for(P = CINV(P2); P != NIL; P = RED(P)) {
p = LELTI(FIRST(P),PO_POLY);
p1 = IPBREI(2,p,1,LBRNRN(i1));
p2 = IPBREI(2,p,1,LBRNRN(i2));
for(n1p = 0, n1n = 0, L1 = IPRRID(IPPGSD(1,p1)); L1 != NIL; L1 = RED(L1))
if (LBRNCOMP(SECOND(FIRST(L1)),0) <= 0)
n1n++;
else
n1p++;
for(n2p = 0, n2n = 0, L2 = IPRRID(IPPGSD(1,p2)); L2 != NIL; L2 = RED(L2))
if (LBRNCOMP(SECOND(FIRST(L2)),0) <= 0)
n2n++;
else
n2p++;
L1p = COMP(n1p,L1p);
L1n = COMP(n1n,L1n);
L2p = COMP(n2p,L2p);
L2n = COMP(n2n,L2n); }
Step3: /* Make assignments. */
Sol = NIL;
z = ZERO_VECTOR(LENGTH(P2));
Ip = LAST(LELTI(c_l,INDX));
for(i = 2, L = RED(LELTI(c_l,CHILD)); L != NIL; L = RED2(L), i += 2) {
if (!VECTOR_LTEQ(L1n,z)) {
Sol = COMP(LIST2(LIST2(Ip,i),LIST2(Ip+1,AD2D_N_In)),Sol);
for(j = 1,S = FIRST(LELTI(FIRST(L),SIGNPF)); S != NIL; S = RED(S),j++) {
if (FIRST(S) == 0)
SLELTI(L1n,j,LELTI(L1n,j) - 1); } }
else
Sol = COMP(LIST2(LIST2(Ip,i),LIST2(Ip+1,AD2D_Infy)),Sol); }
Ip = LAST(LELTI(c_r,INDX));
for(i = 2, L = RED(LELTI(c_r,CHILD)); L != NIL; L = RED2(L), i += 2) {
if (!VECTOR_LTEQ(L2n,z)) {
Sol = COMP(LIST2(LIST2(Ip-1,AD2D_N_In),LIST2(Ip,i)),Sol);
for(j = 1,S = FIRST(LELTI(FIRST(L),SIGNPF)); S != NIL; S = RED(S),j++) {
if (FIRST(S) == 0)
SLELTI(L2n,j,LELTI(L2n,j) - 1); } }
else
Sol = COMP(LIST2(LIST2(Ip-1,AD2D_Infy),LIST2(Ip,i)),Sol); }
return Sol;
}
Word ASYS2(Word M, Word H, Word I, Word P2)
{
Word P,p,tH,tI,h1,h2,i1,i2;
tH = -LBRNSIGN(IUPLBREVAL(M,FIRST(H)));
tI = LBRNSIGN(IUPLBREVAL(M,SECOND(I)));
Step1: /* Refine I and H. */
for(P = P2; P != NIL; P = RED(P)) {
p = LELTI(FIRST(P),PO_POLY);
p = IPEVAL(2,p,2,0);
while(TSVSLI(p,H)) {
FIRST2(H,&h1,&h2);
H = LIST2(LSIM(h1,h2),h2); }
while(TSVSLI(p,I)) {
FIRST2(I,&i1,&i2);
I = LIST2(LSIM(i1,i2),i2); } }
FIRST2(H,&h1,&h2);
FIRST2(I,&i1,&i2);
I = LIST2(LSIM(h1,h2),LSIM(i1,i2));
return I;
}
/* Logrithmic binary rational isolating interval bisection. */
Word LBRIIBISECT(Word I, Word p, Word t, Word *J_)
{
Word f,i1,i2,i,s,J;
Step1: /* Initialize. */
f = 0;
FIRST2(I,&i1,&i2);
i = LSIM(i1,i2);
s = IUPBRES(p,i);
Step2: /* Construct refined interval. */
if (s == 0) {
f = 1;
J = LIST2(i,i); }
else if (s == t)
J = LIST2(i1,i);
else
J = LIST2(i,i2);
Return: /* Prepare to return. */
*J_ = J;
return f;
}
|