File: ACMADJ2D.c

package info (click to toggle)
qepcad 1.74%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,848 kB
  • sloc: ansic: 27,242; cpp: 2,995; makefile: 1,287; perl: 91
file content (287 lines) | stat: -rw-r--r-- 7,444 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*
Arnon-Collins-McCallum adjecncy for 2-D CAD's

c  : a single-point cell in the 1D CAD.
A  : a primitive squarefree integral polynomial.
I  : a logarithmic standard interval isolating a root of A.
     This root is the cell c.  We have a restriction on I
     that it be contained in the union of c and its left and
     right neighbors.  We don't allow a 1-point interval.
P  : the projection factor set.

*/
#include "oldadj.h"

Word ACMADJ2D(Word c, Word c_l, Word c_r, Word P)
{
  Word P_2,L,t,i,x1,x2,s,e,Q,y1,y2,p,M,b,Ip,ip1,ip2,i1,i2,i_l,i_r;
  Word H,h1,h2,p1,p2,p3,d,J,K,G,I,A,R,pp,ep,j1,j2,P1,P2,Sol,k,nl,nr,il,ir;

Step0: /* Shouldn't even have been called. */ 
  if (LENGTH(LELTI(c,CHILD)) <= 0) {
    Sol = NIL;
    goto Return; }

Step1: /* Get (A,I) defining c. */
  s = LELTI(c,SAMPLE);
  FIRST3(s,&M,&I,&b);
  ANFAF(M,I,LAST(b),&A,&Ip);
  FIRST2(Ip,&ip1,&ip2);
  i1 = RNLBRN(ip1);
  i2 = RNLBRN(ip2);
  t = 0;

Step2: /* Get sample points for c_l and c_r. */
  i_l = RNLBRN(SPRLC(c_l));
  i_r = RNLBRN(SPRLC(c_r));

Step3: /* Either I is an open SI containing c, or H and I are consecutive
SI's such that H = (h1,h2) and I = (i1,i2) and h2 = i1 = coordinate of c. */
  if (LBRNCOMP(i1,i2) != 0) {
    H = 0;
    t = LBRNSIGN(IUPLBREVAL(A,i2)); if (t == 0) SWRITE("Error in ACMADJ2D\n");
    while(LBRNCOMP(i1,i_l) < 0 || LBRNCOMP(i_r,i2) < 0) {
      i = LSIM(i1,i2);
      s = LBRNSIGN(IUPLBREVAL(A,i));
      if (s == 0) {
	i1 = i; i2 = i; break; }
      if (s == t)
	i2 = i;
      else
	i1 = i; } }
  if (LBRNCOMP(i1,i2) == 0) {
    h2 = i1;
    p1 = SECOND(LBRNDIF(i1,i_l));
    p2 = SECOND(LBRNDIF(i_r,i1));
    if (i1 == 0) p3 = 1; else p3 = SECOND(i1);
    p = 4 + IMAX(p1,IMAX(p2,p3)); /* The 4 is arbitrary. */
    d = LBRNFIE(1,-p);
    h1 = LBRNDIF(h2,d);
    i2 = LBRNSUM(i1,d);
    H = LIST2(h1,h2); }
  I = LIST2(i1,i2);


Step4: /* Initialize main loop. */
  P_2 = LELTI(P,2);
  L = LLSISS(c);

if (L == NIL) {
  Sol = ASYS1(A,H,I,P_2,c_l,c_r);
  goto Return;
}

  R = NIL;
  ep = FIRST(L);

Step5: /* Loop over each section cell in the stack. */
  for(i = 2; L != NIL; i += 2) {
    ADV(L,&e,&L);

    x1 = 0;
    x2 = 0;
    FIRST3(e,&s,&J,&K);
    for(Q = P_2; s != NIL; s = RED(s), Q = RED(Q)) {
      if (FIRST(s) == 0) {
	p = LELTI(FIRST(Q),PO_POLY);
	
	if (H == 0) {
	  G = RIIFACMA(I,A,t,p,J,K); I = G; }
	else
	  G = RIIFACMABR(p,J,K,&H,&I);
	FIRST2(DNCAC(e,G,p),&y1,&y2);
	x1 += y1;
	x2 += y2; } }
    R = COMP(LIST2(x1,x2),R); }
  R = INV(R);
    
Step6: /* Determine number of negative asymptotes. */
  J = SECOND(ep);
  j2 = FIRST(J);
  i2 = SECOND(I);
  if (H == 0)
    i1 = FIRST(I);
  else
    i1 = FIRST(H);

  x1 = 0; x2 = 0;
  /*  for(Q = P_2; s != NIL; s = RED(s), Q = RED(Q)) { OLD WAY */
  for(Q = P_2; Q != NIL; Q = RED(Q)) {
    p = LELTI(FIRST(Q),PO_POLY);
    pp = PTMV(2,p);

    P1 = IPIPP(1,IPLBREVAL(2,pp,i1));
    P2 = IPIPP(1,IPLBREVAL(2,pp,i2));
  
    j1 = LBRNNEG(IUPLRB(P1));
    if (LBRNCOMP(j1,j2) < 0)
      x1 += LENGTH(IPRRILBRI(P1,LIST2(j1,j2)));

    j1 = LBRNNEG(IUPLRB(P2));
    if (LBRNCOMP(j1,j2) < 0)
      x2 += LENGTH(IPRRILBRI(P2,LIST2(j1,j2))); }
    
Step7: /* Construct adjacency assignment list. */
  Sol = NIL;
  k = FIRST(LELTI(c,INDX));
  nl = LENGTH(LELTI(c_l,CHILD));
  nr = LENGTH(LELTI(c_r,CHILD));
  il = 2;
  ir = 2;
  while(x1 > 0) {
    Sol= COMP(LIST2(LIST2(k-1,il),LIST2(k,AD2D_N_In)),Sol);
    il += 2;
    x1--; }
  while(x2 > 0) {
    Sol= COMP(LIST2(LIST2(k,AD2D_N_In),LIST2(k+1,ir)),Sol);
    ir += 2;
    x2--; }
  for(i = 2; R != NIL; i += 2, R = RED(R)) {
    FIRST2(FIRST(R),&x1,&x2);
    while(x1 > 0) {
      Sol= COMP(LIST2(LIST2(k-1,il),LIST2(k,i)),Sol);
      il += 2;
      x1--; }
    while(x2 > 0) {
      Sol= COMP(LIST2(LIST2(k,i),LIST2(k+1,ir)),Sol);
      ir += 2;
      x2--; } }

  while(il < nl) {
    Sol= COMP(LIST2(LIST2(k-1,il),LIST2(k,AD2D_Infy)),Sol);
    il += 2; }
  while(ir < nr) {
    Sol= COMP(LIST2(LIST2(k,AD2D_Infy),LIST2(k+1,ir)),Sol);
    ir += 2; }

Return: /* Prepare to return. */
  return Sol;
}



Word ASYS1(Word M, Word H, Word I, Word P2, Word c_l, Word c_r)
{
  Word P,p,t,i1,i2,L1p,L2p,L1n,L2n,n1p,n1n,n2p,n2n,p1,p2,L1,L2,J,j,z,Sol,i,L,S,Ip;

Step1: /* Refine I so that for each p in P_2 p(x,0) has no sign variations in I. */
  if (H != 0)
    I = ASYS2(M,H,I,P2);
  else {
    t = LBRNSIGN(IUPLBREVAL(M,SECOND(I))); /* Get trend of M in I. */
    for(P = P2; P != NIL; P = RED(P)) {
      p = LELTI(FIRST(P),PO_POLY);
      p = IPEVAL(2,p,2,0);
      while(TSVSLI(p,I)) {
	if (LBRIIBISECT(I,M,t,&J)) {
	  FIRST2(I,&i1,&i2);
	  I = ASYS2(M,LIST2(i1,FIRST(J)),LIST2(FIRST(J),i2),P2);
	  goto Step2; }
	else 
	  I = J; } }
    if (LBRIIBISECT(I,M,t,&J)) {
      FIRST2(I,&i1,&i2);
      j = FIRST(J);
      I = LIST2(LSIM(i1,j),LSIM(j,i2)); }
    else
      I = J; }

Step2: /* Get number of roots each way. */
  FIRST2(I,&i1,&i2);
  L1p = NIL; L1n = NIL; L2p = NIL; L2n = NIL; 
  for(P = CINV(P2); P != NIL; P = RED(P)) {
    p = LELTI(FIRST(P),PO_POLY);
    p1 = IPBREI(2,p,1,LBRNRN(i1));
    p2 = IPBREI(2,p,1,LBRNRN(i2));
    
    for(n1p = 0, n1n = 0, L1 = IPRRID(IPPGSD(1,p1)); L1 != NIL; L1 = RED(L1))
      if (LBRNCOMP(SECOND(FIRST(L1)),0) <= 0)
	n1n++;
      else
	n1p++;

    for(n2p = 0, n2n = 0, L2 = IPRRID(IPPGSD(1,p2)); L2 != NIL; L2 = RED(L2))
      if (LBRNCOMP(SECOND(FIRST(L2)),0) <= 0)
	n2n++;
      else
	n2p++;
    L1p = COMP(n1p,L1p);
    L1n = COMP(n1n,L1n);
    L2p = COMP(n2p,L2p);
    L2n = COMP(n2n,L2n); }

Step3: /* Make assignments. */
  Sol = NIL;
  z = ZERO_VECTOR(LENGTH(P2));
  Ip = LAST(LELTI(c_l,INDX));
  for(i = 2, L = RED(LELTI(c_l,CHILD)); L != NIL; L = RED2(L), i += 2) {
    if (!VECTOR_LTEQ(L1n,z)) {
      Sol = COMP(LIST2(LIST2(Ip,i),LIST2(Ip+1,AD2D_N_In)),Sol);
      for(j = 1,S  = FIRST(LELTI(FIRST(L),SIGNPF)); S != NIL; S = RED(S),j++) {
	if (FIRST(S) == 0)
	  SLELTI(L1n,j,LELTI(L1n,j) - 1); } }
    else
      Sol = COMP(LIST2(LIST2(Ip,i),LIST2(Ip+1,AD2D_Infy)),Sol); }

  Ip = LAST(LELTI(c_r,INDX));
  for(i = 2, L = RED(LELTI(c_r,CHILD)); L != NIL; L = RED2(L), i += 2) {
    if (!VECTOR_LTEQ(L2n,z)) {
      Sol = COMP(LIST2(LIST2(Ip-1,AD2D_N_In),LIST2(Ip,i)),Sol);
      for(j = 1,S  = FIRST(LELTI(FIRST(L),SIGNPF)); S != NIL; S = RED(S),j++) {
	if (FIRST(S) == 0)
	  SLELTI(L2n,j,LELTI(L2n,j) - 1); } }
    else
      Sol = COMP(LIST2(LIST2(Ip-1,AD2D_Infy),LIST2(Ip,i)),Sol); }

  return Sol;
}


Word ASYS2(Word M, Word H, Word I, Word P2)
{
  Word P,p,tH,tI,h1,h2,i1,i2;

  tH = -LBRNSIGN(IUPLBREVAL(M,FIRST(H)));
  tI = LBRNSIGN(IUPLBREVAL(M,SECOND(I)));

Step1: /* Refine I and H. */
  for(P = P2; P != NIL; P = RED(P)) {
    p = LELTI(FIRST(P),PO_POLY);
    p = IPEVAL(2,p,2,0);
    while(TSVSLI(p,H)) {
      FIRST2(H,&h1,&h2);
      H = LIST2(LSIM(h1,h2),h2); }
    while(TSVSLI(p,I)) {
      FIRST2(I,&i1,&i2);
      I = LIST2(LSIM(i1,i2),i2); } }
  FIRST2(H,&h1,&h2);
  FIRST2(I,&i1,&i2);
  I = LIST2(LSIM(h1,h2),LSIM(i1,i2));

  return I;
}

/* Logrithmic binary rational isolating interval bisection. */
Word LBRIIBISECT(Word I, Word p, Word t, Word *J_)
{
      Word f,i1,i2,i,s,J;
  
Step1: /* Initialize. */
      f = 0;
      FIRST2(I,&i1,&i2);
      i = LSIM(i1,i2);
      s = IUPBRES(p,i);

Step2: /* Construct refined interval. */
      if (s == 0) {
	f = 1;
	J = LIST2(i,i); }
      else if (s == t)
	J = LIST2(i1,i);
      else
	J = LIST2(i,i2);

Return: /* Prepare to return. */
      *J_ = J;
      return f;
}