File: PROJMCECmod.c

package info (click to toggle)
qepcad 1.74%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,848 kB
  • sloc: ansic: 27,242; cpp: 2,995; makefile: 1,287; perl: 91
file content (286 lines) | stat: -rw-r--r-- 9,100 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/*======================================================================
                      P <- PROJMCmod(r,A)

A "safe" half-way implementation of the improved McCallum projection
with equational constraints!  Projects with constraints, but does
not propogate!

\Input
  \parm{r} is a $\beta$--integer.
  \parm{A} is the list of distinct positive irreducible elements
           of $Z[x_1,\ldots,x_r]$ of positive degree in $x_r$.
  
\Output
  \parm{P} is the "safe" half-way improved McCallum's projection of $A$.
======================================================================*/
#include "qepcad.h"
#include "db/CAPolicy.h"

Word QepcadCls::PROJMCECmod(Word r, Word A)
{
       Word A1,A2,Ap,Ap1,Ap2,App,D,L,Lh,P,R,W,i,t,Q,j,S,C;
       Word Ls, Lc,LL,f,rp,fp,T1,fef,esu,AssTmp,Sf;

Step0: /* Obtain pivot constraint: If pivot is not all of level k, we can't use it! */
       C = LELTI(GVPIVOT,r);
       for(Word L = C; L != NIL; L = RED(L))
	 if (SECOND(FIRST(L)) != r)
	 {
	   if (PCVERBOSE)
	     SWRITE("Pivot contains a lower level constraint, cannot use it! Reverting to non-eqconst.\n");
	   P = PROJMCmod(r,A);
	   goto Return;
	 }

Step1: /* Obtain coefficients. */
       P = NIL;
       Ap = A;
       while (Ap != NIL) {
	 ADV(Ap,&A1,&Ap);
	 if (C != NIL && !MEMBER(LELTI(A1,PO_LABEL),C)) continue;
	 Ap1 = LELTI(A1,PO_POLY); 

	 /* Deal with projection points!: NOT REALLY IMPLEMENTED RIGHT NOW! */
	 if (LELTI(A1,PO_TYPE) == PO_POINT) {
	   W = MPOLY(RED(Ap1),NIL,LIST1(LIST2(PT_PRJ,A1)),PO_POINT,PO_KEEP);
	   P = COMP(W,P);
	   continue;
	 }

	 /* Handle the leading coefficient! */
	 L = PLDCF(Ap1); 
	 Lh = NIL;
	 t = 0;

	 /*-- TEST NEW --*/
	 if (experimentalExtensionFlag)
	 {
	   bool qfc = qfrCheckNonVanishing(r-1,L,GVNA.W,GVNQFF.W,GVVL.W);
	   if (qfc) continue;
	 }
	 /*-- END TEST NEW --*/

	 if (!VERIFYCONSTSIGN(r-1,IPIP(r-1,ISIGNF(PLBCF(r-1,L)),L),1,GVNA.W)) {
	   W = MPOLY(L,NIL,LIST1(LIST3(PO_LCO,0,A1)),PO_OTHER,PO_KEEP);
	   P = COMP(W,P); 
	   Lh = COMP(L,Lh); 
	   t = 1; }
	 
	 /* If r = 2 OR r-1 is in free variable space, the leading coefficient is always enough! */
	 if ((t && (r == 2 || (PCMZERROR && r-1 <= GVNFV)))
	     || (experimentalExtensionFlag && qfrCheckNonNullified(r,Ap1,GVNA.W,GVNQFF.W,GVVL.W))
	     )
	   t = 0;
	 else if (t) {
	   T1 = ACLOCK();
	   /**************
            If every factor of the leading coefficient is
	    1 identically non-zero, OR
	    2 of a level corresponding to a FULLDE or FULLDA quantifier, OR
	    3 in free variable space when the PCMZERROR option is used, OR
	    4 has no common zero with the system of all other coefficients
	    Then ... we need only include the leading coefficient. 
	   ****************/
	   /* Loop over each factor f of L, the leading coefficient of Ap1 */	 
	   IPFAC(r-1,L,&Ls,&Lc,&LL);
	   S = 0;
	   fef = 1; /* For every factor ... initially true. */
	   for(Word LLp = LL; t != 0 && fef && LLp != NIL; LLp = RED(LLp))
	   {
	     f = SECOND(FIRST(LLp));
	     PSIMREP(r-1,f,&rp,&fp);
	     Word tf = 0;
	     
	     /* Test 1: identically non-zero */
	     //--ORIGINAL-- tf = tf || VERIFYCONSTSIGN(r-1,f,1,GVNA.W);
	     tf = tf || (experimentalExtensionFlag && qfrCheckNonVanishing(r-1,f,GVNA.W,GVNQFF.W,GVVL.W));
	     
	     /* Test 2: of a level corresponding to a FULLDE or FULLDA quantifier */
	     j = rp - GVNFV;
	     Q = j > 0 ? LELTI(GVQ,j) : NIL;
	     tf = tf || (Q == FULLDE || Q == FULLDA);
	     
	     /* Test 3: in free variable space when the PCMZERROR option is used */
	     tf = tf || (PCMZERROR && rp <= GVNFV);

	     /* Test 4: has no common zero with the system of all other coefficients */
	     if (!tf)
	     {
	       /* Get coeff sys for reductum & see if it's unsat */
	       if (S == 0) {
		 AssTmp = (GVNA == NIL) ? TRUE : CHANGEASSUMPTIONSLEVEL(GVNA.W,r-1,1);
		 S = COEFSYS(r,PRED(Ap1));
		 if (S != 1) S = SIMPLIFYSYSLIST(r-1,S,AssTmp); }
	       if (S == 1) { t = 0; continue; }
	       
	       /* Add f to S and do a quick test for unsat */
	       Sf = NIL; for(Word Sp = S; Sp != NIL; Sp = RED(Sp)) Sf = COMP(COMP(f,FIRST(Sp)),Sf);
	       Sf = SIMPLIFYSYSLIST(r-1,Sf,AssTmp);
	       tf = tf || Sf == 1;
	       
	       /* Last resort: Try to determine unsat-ness via CAD! */	     
	       if (!tf)
	       {
		 QepcadCls Q;
		 esu = 1; /* Every System Unsat flag */
		 for(; esu && Sf != NIL; Sf = RED(Sf))
		   esu = (SYSSOLVECAD(r-1,FIRST(Sf),GVNA == NIL ? TRUE : GVNA.W,GVVL,Q) == NIL);
		 /* NOTE: "projection points" need to be implemented so when SYSSOLVECAD returns
		    a list of points, we simply add those to the projection points, rather than
		    giving up and adding all coefficients! */
		 tf = esu;
	       }
	     }
	     fef = fef && tf;
	   }
	   t = !fef;
	   T1 = ACLOCK() - T1;
	   if (PCVERBOSE) {
	     SWRITE("LDCF sufficiency check took "); IWRITE(T1); SWRITE("ms\n");
	     if (!t)
	       SWRITE("Found LDCF sufficient for ");
	     else
	       SWRITE("Unable to determine LDCF sufficiency for ");
	     IPDWRITE(r,Ap1,GVVL);
	     SWRITE("\n");	    
	   }
	 }
	 
	 /* Equational constraints invalidated! */
	 if (t)
	 {
	   if (PCVERBOSE)
	   {
	     SWRITE("Pivot constraint at level ");
	     IWRITE(r);
	     SWRITE(" may be nullified.  If nullified on \n");
	     SWRITE("a positive dimensional region equational constraints could be\n");
	     SWRITE("invalid.  Switching to standard projection.\n");
	   }
	   /*
	     In this case, we need to remove the constraints at this level in order to
	     stop UDEQNCONST
	    */
	   P = PROJMCmod(r,A);
	   goto Return;	   
	 }

	 /* Handle the rest of the coefficients as needed. */
	 i = 0;
	 while (t) {
	   Ap1 = PRED(Ap1); i++;  L = PLDCF(Ap1);
	   t = 0;
	   if (Ap1 != 0) 
	     if (!PCONST(r - 1,L)) 
	       if (!IPFZT(r - 1,Lh)) {
		 W = MPOLY(L,NIL,LIST1(LIST3(PO_LCO,i,A1)),PO_OTHER,PO_KEEP); 
		 P = COMP(W,P); 
		 Lh = COMP(L,Lh); 
		 t = 1; } } 
       }

Step2: /* Obtain discriminants. */
       Ap = A;
       while (Ap != NIL) {
	 ADV(Ap,&A1,&Ap);
	 if (LELTI(A1,PO_TYPE) == PO_POINT) continue;
	 Ap1 = LELTI(A1,PO_POLY);
	 if (PDEG(Ap1) < 2) continue;

	 /* discriminants for pivot polynomials are required.  However,
	    discriminants for non-pivot polynomials are only known not
	    to be necessary when either only sign invariance is required
	    of that polynomial, or when its sign-invariance along with the
	    vanishing of a constraint implies its order invariance.	    
	  */
	 if (C != NIL && !MEMBER(LELTI(A1,PO_LABEL),C))
	 {
	   if (r <= 2) continue;
	   if (!PFPRDQ(A1)) continue;
	   if (GVCAP->supports("CONSTORDTEST"))
	   {
	     /* Checks that Ap1 has constant order in V(Ap1,cq) for each
		cq in C.  Better would be to take advantage of any other
		equational constraints --- i.e. non-pivot constraints and
		constraints at lower levels.  Should add later! */
	     bool oiflag = true;
	     for(Word Cp = C; Cp != NIL && oiflag; Cp = RED(Cp))
	     {
	       Word cq = POLFLAB(FIRST(Cp),GVPF);
	       Word tr = GVCAP->CONSTORDTEST(r,Ap1,LIST1(LELTI(cq,PO_POLY)));
	       if (tr != TRUE) oiflag = false;
	     }
	     if (oiflag) {
	       if (PCVERBOSE) {
		 SWRITE("Determined that discriminant of non-pivot polynomial ");
		 IPDWRITE(r,Ap1,GVVL);
		 SWRITE(" may be safely left out of the projection.\n");
		 SWRITE("I.e. the poly will be order-invariant in sections of the pivot.\n");
	       }
	       continue;
	     }
	   }
	   if (PCVERBOSE) {
	     SWRITE("Unable to determine that discriminant of non-pivot polynomial ");
	     IPDWRITE(r,Ap1,GVVL);
	     SWRITE(" may be safely left out of the projection.\n");
	   }
	 }
	 D = IPDSCRQE(r,Ap1);
	 W = MPOLY(D,NIL,LIST1(LIST4(PO_DIS,0,0,A1)),PO_OTHER,PO_KEEP);
	 P = COMP(W,P); }
       
Step3: /* Obtain resultants. */
       Ap = A;
       while (Ap != NIL) {
	 ADV(Ap,&A1,&Ap);
	 if (LELTI(A1,PO_TYPE) == PO_POINT) continue;
	 Ap1 = LELTI(A1,PO_POLY);
	 App = Ap;
	 while (App != NIL) {
	   ADV(App,&A2,&App);
	   if (LELTI(A2,PO_TYPE) == PO_POINT) continue;
	   if (C != NIL &&
	       !MEMBER(LELTI(A1,PO_LABEL),C) &&
	       !MEMBER(LELTI(A2,PO_LABEL),C))
	     continue;
	   Ap2 = LELTI(A2,PO_POLY);
	   R = IPRESQE(r,Ap1,Ap2);
	   W = MPOLY(R,NIL,LIST1(LIST6(PO_RES,0,0,A1,0,A2)),PO_OTHER,PO_KEEP);
	   P = COMP(W,P); } }

Step4: /* Finish. */
       P = INV(P);
       goto Return;

Return: /* Prepare for return. */
       return(P);
}





/*
Input
 r : a level
 A : an r-level saclib polynomial
 L : a list of r-variate saclib polynomials

Returns TRUE if it is determined that the vanishing of A and 
the elements of L implies that the order of A is constant.
Otherwise returns a GB for A,L and all k-order partials s.t.
some of the partials are not 0.
 */
//Word CONSTORDTEST(Word A, Word L)
//{
  /* Construct Groebner Basis GB for L cup {A}. */
  
  /* Find minimal k such that there is a k-th order 
     partial that is not reduced to 0 by GB. */

  /* Construct S, the set of all k-th order partials. 
     Construct Groebner Basis GB2 for GB cup S. */

  /* If GB2 = [1] return TRUE, else return GB2. */
//}