1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
/*======================================================================
CONSTRUCT(c,k,f,Ps,As)
Construct a stack.
\Input
\parm{c} is a candidate cell of~\v{D}.
\parm{k} is the level of the cell~\v{c}.
\parm{f} is the number of free variables in the input formula.
\parm{P*} is the list of the $(k+1)$--level projection factors.
\parm{A*} is the list of all the distinct $(k+1)$--level
normalized input polynomials.
\Output
A stack is constructed over the cell~\v{c}.
If \v{A*} $\neq \emptyset$ or $k+1 \leq f$,
the signature of \v{P*} on each cell in the stack is determined
and attached to the cell.
======================================================================*/
#include "qepcad.h"
Word IUPSBRRI(Word B, BDigit k);
void QepcadCls::CONSTRUCT(Word c, Word k, Word f, Word Ps_, Word As)
{
BDigit p,t,Ths;
Word B,b,E,I,Ip,I1,J,Jp,L,M,Ps,S,s,T;
Step0: /* Root cell. */
if (k == 0) { CONSTRUCT1(c,k,f,Ps_,As); goto Return; }
Step1: /* Extract the projection factors from their attribute lists. */
Ps = NIL;
for(Word Pt = CINV(Ps_); Pt != NIL; Pt = RED(Pt))
{
Word Pt1 = FIRST(Pt);
if (LELTI(Pt1,PO_TYPE) != PO_POINT)
Ps = COMP(LELTI(Pt1,PO_POLY),Ps);
}
Step3: /* Non-root cell, Irrational sample point. */
s = LELTI(c,SAMPLE); FIRST3(s,&M,&J,&b);
if (PDEG(M) == 1
/*Int*/ && PCRSP == 'y'
) goto Step4;
/*Int*/ Ths = ACLOCK();
S = SUBSTDB(c,k,M,b,Ps,*this);
/*Int*/ Ths = ACLOCK() - Ths;
/*Int*/ TMSUBST[k + 1] = TMSUBST[k + 1] + Ths;
/*Int*/ if (LSRCH('l',PCPROJOP) != 0 && LSRCH(0,S) != 0)
/*Int*/ FAIL("CONSTRUCT","Substitution failed",k,M,b,Ps,S);
SLELTI(c,DEGSUB,PLDEG(S));
/*Int*/ Ths = ACLOCK();
AFUPLM(M,S,&L,&T);
/*Int*/ Ths = ACLOCK() - Ths;
/*Int*/ TMAFUPLM[k + 1] = TMAFUPLM[k + 1]+Ths;
/*Int*/ Ths = ACLOCK();
AFCSBMDB(M,T,&B,&E);
/*Int*/ Ths = ACLOCK() - Ths;
/*Int*/ TMAFCSBM[k + 1] = TMAFCSBM[k + 1] + Ths;
if (B != NIL) {
if (PCAFUPBRI == 1) {
Jp = BRILBRI(J);
Ths = ACLOCK();
AFUPHIBRI(M,Jp,B, &I,&t);
Ths = ACLOCK() - Ths;
TMAFUPHIBRI[k+1] = TMAFUPHIBRI[k+1] + Ths;
if (t == 0) {
Ip = I;
while (Ip != NIL) {
I1 = FIRST(Ip);
I1 = LBRIBRI(I1);
SFIRST(Ip,I1);
Ip = RED2(Ip); } }
if (t != 0) {
#ifdef _QEVERBOSE
SWRITE("AFUPHIBRI failed, t = ");
OWRITE(t);
SWRITE(", Ths = ");
IWRITE(Ths);
SWRITE("\n");
SWRITE("Cell index: ");
LWRITE(LELTI(c,6));
SWRITE("\n");
#endif
p = 2;
Jp = BRILBRI(J);
I = 0;
while (I == 0 && p <= 10) {
Ths = ACLOCK();
AFUPSIBRI(M,Jp,B,p, &Jp,&I);
Ths = ACLOCK() - Ths;
TMAFUPSIBRI[k+1] = TMAFUPSIBRI[k+1] + Ths;
#ifdef _QEVERBOSE
SWRITE("p = ");
IWRITE(p);
SWRITE(", Ths = ");
IWRITE(Ths);
SWRITE("\n");
#endif
p = p + 1; }
if (I == 0) {
Ths = ACLOCK();
I = AFUPBRI(M,J,B);
Ths = ACLOCK() - Ths;
#ifdef _QEVERBOSE
SWRITE("AFUPBRI time: ");
IWRITE(Ths);
SWRITE("\n");
#endif
TMAFUPBRI[k+1] = TMAFUPBRI[k+1] + Ths; } } }
else {
Ths = ACLOCK();
I = AFUPBRI(M,J,B);
Ths = ACLOCK() - Ths;
TMAFUPBRI[k+1] = TMAFUPBRI[k+1] + Ths; } }
else
I = NIL;
/*Int*/ Ths = ACLOCK();
EC(c,I,E,B);
/*Int*/ Ths = ACLOCK() - Ths;
/*Int*/ TMEC[k + 1] = TMEC[k + 1] + Ths;
/*Int*/ Ths = ACLOCK();
SIGNP(c,k,B,I,E,L);
/*Int*/ Ths = ACLOCK() - Ths;
/*Int*/ TMSIGNP[k + 1] = TMSIGNP[k + 1] + Ths;
/*Int*/ NMSTACK[k + 1] = NMSTACK[k + 1] + 1;
/*Int*/ NMCELL[k + 1] = NMCELL[k + 1] + LENGTH(LELTI(c,CHILD));
goto Return;
Step4: /* Non-root cell, Rational sample point. */
/*Int*/ Ths = ACLOCK();
b = RCFAFC(b);
/*Int*/ Ths = ACLOCK() - Ths;
/*Int*/ TMRCFAFC[k + 1] = TMRCFAFC[k + 1] + Ths;
/*Int*/ Ths = ACLOCK();
S = SUBSTR(c,k,b,Ps);
/*Int*/ Ths = ACLOCK() - Ths;
/*Int*/ TMSUBSTR[k + 1] = TMSUBSTR[k + 1] + Ths;
/*Int*/ if (LSRCH('l',PCPROJOP) != 0 && LSRCH(0,S) != 0)
/*Int*/ FAIL("CONSTRUCT","Substitution failed",k,M,b,Ps,S);
SLELTI(c,DEGSUB,PLDEG(S));
/*Int*/ Ths = ACLOCK();
IPLSRP(S,&s,&T);
/*Int*/ Ths = ACLOCK() - Ths;
/*Int*/ TMIPLSRP[k + 1] = TMIPLSRP[k + 1] + Ths;
/*Int*/ Ths = ACLOCK();
IPFSBM(1,T,&B,&E);
/*Int*/ Ths = ACLOCK() - Ths;
/*Int*/ TMIPFSBM[k + 1] = TMIPFSBM[k + 1] + Ths;
/*Int*/ Ths = ACLOCK();
if (B != NIL) I = IPLRRI(B); else I = NIL;
/* if (B != NIL) I = IUPSBRRI(B,-10); else I = NIL; */
/*Int*/ Ths = ACLOCK() - Ths;
/*Int*/ TMIPLRRI[k + 1] = TMIPLRRI[k + 1] + Ths;
/*Int*/ Ths = ACLOCK();
ECR(c,I,E,B);
/*Int*/ Ths = ACLOCK() - Ths;
/*Int*/ TMECR[k + 1] = TMECR[k + 1] + Ths;
/*Int*/ Ths = ACLOCK();
SIGNPR(c,k,B,I,E,s);
/*Int*/ Ths = ACLOCK() - Ths;
/*Int*/ TMSIGNPR[k + 1] = TMSIGNPR[k + 1] + Ths;
/*Int*/ NMSTACK[k + 1] = NMSTACK[k + 1] + 1;
/*Int*/ NMSTACKR[k + 1] = NMSTACKR[k + 1] + 1;
/*Int*/ NMCELL[k + 1] = NMCELL[k + 1] + LENGTH(LELTI(c,CHILD));
Return: /* Prepare for return. */
return;
}
/* CONSTRUCT1 comparison of root structure.
Input:
A,B: lists of the form (P,I,(o1,o2,...,ok)) where
P is uni,sqrfree,prim,irred poly, I is a standard binary rational interval,
and the oi's are projection objects.
Note: These are isolating intervals, so each contains exactly one root
of the given polynomial. Moreover, they're standard binary rational intervals
so if they overlap, it actually means that one is contained in the other.
*/
BDigit C1COMPd(Word A, Word B) /* C1COMPd(A,B) requires that A & B have different pol's*/
{
Word PA,PB,IA,IB;
/* Immediate decision */
FIRST2(A,&PA,&IA);
FIRST2(B,&PB,&IB);
if (RNCOMP(SECOND(IA),FIRST(IB)) <= 0) return -1;
if (RNCOMP(SECOND(IB),FIRST(IA)) <= 0) return 1;
/* Determine widths of isolating intervals */
Word wA = LSILW(BRILBRI(IA));
Word wB = LSILW(BRILBRI(IB));
/* Refine and compare until a decision is made */
while(true) {
if (wA > wB) { IA = IUPIIR(PA,IA); wA--; }
else { IB = IUPIIR(PB,IB); wB--; }
if (RNCOMP(SECOND(IA),FIRST(IB)) <= 0) return -1;
if (RNCOMP(SECOND(IB),FIRST(IA)) <= 0) return 1;
}
}
BDigit C1COMP(Word A, Word B)
{
Word PA,PB,IA,IB;
FIRST2(A,&PA,&IA);
FIRST2(B,&PB,&IB);
if (EQUAL(PA,PB)) {
if (EQUAL(IA,IB)) return 0;
if (RNCOMP(SECOND(IA),FIRST(IB)) <= 0) return -1;
if (RNCOMP(SECOND(IB),FIRST(IA)) <= 0) return 1;
else return 0;
}
else
return C1COMPd(A,B);
}
/* Root cell. */
void QepcadCls::CONSTRUCT1(Word c, Word k, Word f, Word Ps_, Word As)
{
BDigit Ths;
Word I,Ps,Pp;
Step1: /* Extract the projection factors from their attribute lists. */
Ps = NIL; /* Basis for real-root isolation - i.e. the polynomials */
Pp = NIL; /* Points to be added */
for(Word Pt = CINV(Ps_); Pt != NIL; Pt = RED(Pt))
{
Word Pt1 = FIRST(Pt);
if (LELTI(Pt1,PO_TYPE) == PO_POINT) {
Word s = FIRST(LELTI(Pt1,PO_POLY));
/* Set p to the minimal polynomial for the root */
Word p = LIST3(FIRST(s),SECOND(s),LIST1(Pt1));
if (PDEG(FIRST(s)) == 1) {
Word R = FIRST(FIRST(THIRD(s)));
if (R == 0) p = LIST3(LIST2(1,1),LIST2(0,0),LIST1(Pt1));
else {
Word q = LIST4(1,SECOND(R),0,INEG(FIRST(R)));
Word I = FIRST(IPRIM(q));
p = LIST3(q,I,LIST1(Pt1));
}
}
Pp = COMP(p,Pp);
}
else
Ps = COMP(LELTI(Pt1,PO_POLY),Ps);
}
Step2: /* Isolate roots and create stack. */
/*Int*/ Ths = ACLOCK();
SLELTI(c,DEGSUB,PLDEG(Ps));
/* Compute roots of polynomials */
if (Ps != NIL) {
I = IUPSBRRI(Ps,-10); /* I = IPLRRI(Ps); */
}
else
I = NIL;
/* Transform I into a list of pairs (P,I,L_O) where P is the minpol,
I is the interval, and L_O is a list of projeciton objects */
{
Word T = NIL;
for( ; I != NIL; I = RED2(I))
{
Word p = SECOND(I);
Word Pt = CINV(Ps_);
while(LELTI(FIRST(Pt),PO_TYPE) == PO_POINT || !EQUAL(LELTI(FIRST(Pt),PO_POLY),p))
Pt = RED(Pt);
T = COMP(LIST3(p,FIRST(I),LIST1(FIRST(Pt))),T);
}
I = CINV(T);
}
/* Merge point information */
for(Word Ppp = Pp; Ppp != NIL; Ppp = RED(Ppp))
{
Word p = FIRST(Ppp);
Word H = NIL;
while(1) {
if (I == NIL) { I = CCONC(CINV(H),LIST1(p)); break; }
Word t = C1COMP(p,FIRST(I));
if (t == -1) { I = CCONC(CINV(H),COMP(p,I)); break; }
if (t == 0) {
Word x = THIRD(FIRST(I));
SLELTI(FIRST(I),3,CCONC(x,THIRD(p)));
I = CCONC(CINV(H),I);
break; }
H = COMP(FIRST(I),H);
I = RED(I);
}
}
/*Int*/ Ths = ACLOCK() - Ths;
/*Int*/ TMIPLRRI[k + 1] = TMIPLRRI[k + 1] + Ths;
/*Int*/ Ths = ACLOCK();
EC1(c,I,Ps);
/*Int*/ Ths = ACLOCK() - Ths;
/*Int*/ TMECR[k + 1] = TMECR[k + 1] + Ths;
/*Int*/ Ths = ACLOCK();
SIGNP1(c,Ps_,I);
/*Int*/ Ths = ACLOCK() - Ths;
/*Int*/ TMSIGNPR[k + 1] = TMSIGNPR[k + 1] + Ths;
/*Int*/ NMSTACK[k + 1] = NMSTACK[k + 1] + 1;
/*Int*/ NMSTACKR[k + 1] = NMSTACKR[k + 1] + 1;
/*Int*/ NMCELL[k + 1] = NMCELL[k + 1] + LENGTH(LELTI(c,CHILD));
goto Return;
Return: /* Prepare for return. */
return;
}
/*
Integral univariate polynomial squarefree basis real-root isolation and interval refinement
B : the basis
p : the starting software precision
k : the desired interval width
Output
R : either 0 (indicating failure) or a list of roots
(I1,B1,...,Im,Bm), where I1 < I2 < ... < Im
Note: This would be tremendously improved by recognizing exact binary rational roots of
all elements of B, not just the linear elements!
*/
Word IUPSBRRIIR(Word t_B, BDigit p, BDigit k)
{
/* Get software versions of the elements of B, and isolate their roots */
bool fail = false;
Word L = NIL, M = NIL, R = NIL;
BDigit N = LENGTH(t_B);
BDigit **C = new BDigit*[N + 1]; for(int i = 0; i < N + 1; ++i) C[i] = 0;
for(Word B = t_B, i = 1; B != NIL; B = RED(B),++i)
{
Word b = FIRST(B);
Word n = PDEG(b);
C[i] = new Word[(n+1)*(2*p+6)+1];
IPSIP(b,p,C[i]);
Word Li = 0;
/* If we have a linear polynomial defining a binary rational number, compute root eactly! */
if (n == 1) {
Word den = PLDCF(b), num = PCOEFF(b,0), lm, ln;
if (num == 0)
Li = LIST1(LIST2(0,0));
else {
IFCL2(den,&lm,&ln);
if (ICOMP(lm,ln) == 0) {
Word x = RNLBRN(RNRED(INEG(num),den));
Li = LIST1(LIST2(x,x)); } }
}
/* Otherwise, isolate using floating-point routines */
if (Li == 0)
Li = SIPRRID(C[i]);
if (Li == 0) { fail = true; goto Return; }
for(BDigit t = (n%2==1 ? 1 : -1); Li != NIL; t *= -1, Li = RED(Li)) {
Word I = FIRST(Li);
Word J = SIPIR(C[i],I,t,k);
L = COMP(LIST3(i,J,t),L);
}
}
/* Sort and refine roots */
M = SIPIIRMS(L,C);
if (M == 0) { fail = true; /* SWRITE("failed in merge!\n"); */ goto Return; }
/* Make returned list */
R = NIL;
for(Word Mp = CINV(M); Mp != NIL; Mp = RED(Mp))
{
Word i, I, t;
FIRST3(FIRST(Mp),&i,&I,&t);
R = COMP2(I,LELTI(t_B,i),R);
}
Return: /* Prepare to return! */
for(int i = 1; i <= N; ++i) delete [] C[i];
delete [] C;
if (fail) R = 0;
return R;
}
/*
Integral univariate polynomial squarefree basis real-root isolation
same specs as IPLRRI(L), except it target root intervals with
width 2^k.
*/
Word IUPSBRRI(Word B, BDigit k)
{
Word L = NIL;
/* Get the roots */
const BDigit P = 64; // The current limit on how far I'll go in software interval computations
Word R = 0;
for(BDigit p = 1; R == 0 && p <= P; p *= 2) {
R = IUPSBRRIIR(B,p,k);
if (PCVERBOSE && R != 0) { SWRITE("Required precision "); IWRITE(p); SWRITE("!\n"); }
}
if (PCVERBOSE && R == 0) { SWRITE("Exceeded precision limit & switched to exact!\n"); }
/* If successfull, translate from logarithmic to non-logarithmic intervals */
if (R != 0) {
for(Word Rp = CINV(R); Rp != NIL; Rp = RED2(Rp))
{
Word A, I, a, b;
FIRST2(Rp,&A,&I);
FIRST2(I,&a,&b);
L = COMP2(LIST2(LBRNRN(a),LBRNRN(b)),A,L);
} }
/* If unsuccessfull switch to exact! */
else {
L = IPLRRI(B);
}
return L;
}
|