1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
<root>
<key>TrainImagesClassifier-ann</key>
<exec>otbcli_TrainImagesClassifier</exec>
<longname>TrainImagesClassifier (ann)</longname>
<group>Learning</group>
<description>Train a classifier from multiple pairs of images and training vector data.</description>
<parameter>
<parameter_type source_parameter_type="ParameterType_InputImageList">ParameterMultipleInput</parameter_type>
<key>io.il</key>
<name>Input Image List</name>
<description>A list of input images.</description>
<datatype />
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_InputVectorDataList">ParameterMultipleInput</parameter_type>
<key>io.vd</key>
<name>Input Vector Data List</name>
<description>A list of vector data to select the training samples.</description>
<datatype />
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_InputFilename">ParameterFile</parameter_type>
<key>io.imstat</key>
<name>Input XML image statistics file</name>
<description>Input XML file containing the mean and the standard deviation of the input images.</description>
<isFolder />
<optional>True</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_OutputFilename">OutputFile</parameter_type>
<key>io.confmatout</key>
<name>Output confusion matrix</name>
<description>Output file containing the confusion matrix (.csv format).</description>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_OutputFilename">OutputFile</parameter_type>
<key>io.out</key>
<name>Output model</name>
<description>Output file containing the model estimated (.txt format).</description>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>elev.default</key>
<name>Default elevation</name>
<description>This parameter allows setting the default height above ellipsoid when there is no DEM available, no coverage for some points or pixels with no_data in the DEM tiles, and no geoid file has been set. This is also used by some application as an average elevation value.</description>
<minValue />
<maxValue />
<default>0</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>sample.mt</key>
<name>Maximum training sample size per class</name>
<description>Maximum size per class (in pixels) of the training sample list (default = 1000) (no limit = -1). If equal to -1, then the maximal size of the available training sample list per class will be equal to the surface area of the smallest class multiplied by the training sample ratio.</description>
<minValue />
<maxValue />
<default>1000</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>sample.mv</key>
<name>Maximum validation sample size per class</name>
<description>Maximum size per class (in pixels) of the validation sample list (default = 1000) (no limit = -1). If equal to -1, then the maximal size of the available validation sample list per class will be equal to the surface area of the smallest class multiplied by the validation sample ratio.</description>
<minValue />
<maxValue />
<default>1000</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>sample.bm</key>
<name>Bound sample number by minimum</name>
<description>Bound the number of samples for each class by the number of available samples by the smaller class. Proportions between training and validation are respected. Default is true (=1).</description>
<minValue />
<maxValue />
<default>1</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Empty">ParameterBoolean</parameter_type>
<key>sample.edg</key>
<name>On edge pixel inclusion</name>
<description>Takes pixels on polygon edge into consideration when building training and validation samples.</description>
<default>True</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>sample.vtr</key>
<name>Training and validation sample ratio</name>
<description>Ratio between training and validation samples (0.0 = all training, 1.0 = all validation) (default = 0.5).</description>
<minValue />
<maxValue />
<default>0.5</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_String">ParameterString</parameter_type>
<key>sample.vfn</key>
<name>Name of the discrimination field</name>
<description>Name of the field used to discriminate class labels in the input vector data files.</description>
<default>Class</default>
<multiline />
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
<key>classifier</key>
<name>Classifier to use for the training</name>
<description>Choice of the classifier to use for the training.</description>
<options>
<choices>
<choice>ann</choice>
</choices>
</options>
<default>0</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
<key>classifier.ann.t</key>
<name>Train Method Type</name>
<description>Type of training method for the multilayer perceptron (MLP) neural network.</description>
<options>
<choices>
<choice>reg</choice>
<choice>back</choice>
</choices>
</options>
<default>0</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_StringList">ParameterString</parameter_type>
<key>classifier.ann.sizes</key>
<name>Number of neurons in each intermediate layer</name>
<description>The number of neurons in each intermediate layer (excluding input and output layers).</description>
<default />
<multiline />
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
<key>classifier.ann.f</key>
<name>Neuron activation function type</name>
<description>Neuron activation function.</description>
<options>
<choices>
<choice>ident</choice>
<choice>sig</choice>
<choice>gau</choice>
</choices>
</options>
<default>1</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>classifier.ann.a</key>
<name>Alpha parameter of the activation function</name>
<description>Alpha parameter of the activation function (used only with sigmoid and gaussian functions).</description>
<minValue />
<maxValue />
<default>1</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>classifier.ann.b</key>
<name>Beta parameter of the activation function</name>
<description>Beta parameter of the activation function (used only with sigmoid and gaussian functions).</description>
<minValue />
<maxValue />
<default>1</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>classifier.ann.bpdw</key>
<name>Strength of the weight gradient term in the BACKPROP method</name>
<description>Strength of the weight gradient term in the BACKPROP method. The recommended value is about 0.1.</description>
<minValue />
<maxValue />
<default>0.1</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>classifier.ann.bpms</key>
<name>Strength of the momentum term (the difference between weights on the 2 previous iterations)</name>
<description>Strength of the momentum term (the difference between weights on the 2 previous iterations). This parameter provides some inertia to smooth the random fluctuations of the weights. It can vary from 0 (the feature is disabled) to 1 and beyond. The value 0.1 or so is good enough.</description>
<minValue />
<maxValue />
<default>0.1</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>classifier.ann.rdw</key>
<name>Initial value Delta_0 of update-values Delta_{ij} in RPROP method</name>
<description>Initial value Delta_0 of update-values Delta_{ij} in RPROP method (default = 0.1).</description>
<minValue />
<maxValue />
<default>0.1</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>classifier.ann.rdwm</key>
<name>Update-values lower limit Delta_{min} in RPROP method</name>
<description>Update-values lower limit Delta_{min} in RPROP method. It must be positive (default = 1e-7).</description>
<minValue />
<maxValue />
<default>1e-07</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
<key>classifier.ann.term</key>
<name>Termination criteria</name>
<description>Termination criteria.</description>
<options>
<choices>
<choice>iter</choice>
<choice>eps</choice>
<choice>all</choice>
</choices>
</options>
<default>2</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>classifier.ann.eps</key>
<name>Epsilon value used in the Termination criteria</name>
<description>Epsilon value used in the Termination criteria.</description>
<minValue />
<maxValue />
<default>0.01</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>classifier.ann.iter</key>
<name>Maximum number of iterations used in the Termination criteria</name>
<description>Maximum number of iterations used in the Termination criteria.</description>
<minValue />
<maxValue />
<default>1000</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>rand</key>
<name>set user defined seed</name>
<description>Set specific seed. with integer value.</description>
<minValue />
<maxValue />
<default>0</default>
</parameter>
</root>
|