| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 
 | <root>
  <key>TrainImagesClassifier-dt</key>
  <exec>otbcli_TrainImagesClassifier</exec>
  <longname>TrainImagesClassifier (dt)</longname>
  <group>Learning</group>
  <description>Train a classifier from multiple pairs of images and training vector data.</description>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputImageList">ParameterMultipleInput</parameter_type>
    <key>io.il</key>
    <name>Input Image List</name>
    <description>A list of input images.</description>
    <datatype />
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputVectorDataList">ParameterMultipleInput</parameter_type>
    <key>io.vd</key>
    <name>Input Vector Data List</name>
    <description>A list of vector data to select the training samples.</description>
    <datatype />
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputFilename">ParameterFile</parameter_type>
    <key>io.imstat</key>
    <name>Input XML image statistics file</name>
    <description>Input XML file containing the mean and the standard deviation of the input images.</description>
    <isFolder />
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_OutputFilename">OutputFile</parameter_type>
    <key>io.confmatout</key>
    <name>Output confusion matrix</name>
    <description>Output file containing the confusion matrix (.csv format).</description>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_OutputFilename">OutputFile</parameter_type>
    <key>io.out</key>
    <name>Output model</name>
    <description>Output file containing the model estimated (.txt format).</description>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>elev.default</key>
    <name>Default elevation</name>
    <description>This parameter allows setting the default height above ellipsoid when there is no DEM available, no coverage for some points or pixels with no_data in the DEM tiles, and no geoid file has been set. This is also used by some application as an average elevation value.</description>
    <minValue />
    <maxValue />
    <default>0</default>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>sample.mt</key>
    <name>Maximum training sample size per class</name>
    <description>Maximum size per class (in pixels) of the training sample list (default = 1000) (no limit = -1). If equal to -1, then the maximal size of the available training sample list per class will be equal to the surface area of the smallest class multiplied by the training sample ratio.</description>
    <minValue />
    <maxValue />
    <default>1000</default>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>sample.mv</key>
    <name>Maximum validation sample size per class</name>
    <description>Maximum size per class (in pixels) of the validation sample list (default = 1000) (no limit = -1). If equal to -1, then the maximal size of the available validation sample list per class will be equal to the surface area of the smallest class multiplied by the validation sample ratio.</description>
    <minValue />
    <maxValue />
    <default>1000</default>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>sample.bm</key>
    <name>Bound sample number by minimum</name>
    <description>Bound the number of samples for each class by the number of available samples by the smaller class. Proportions between training and validation are respected. Default is true (=1).</description>
    <minValue />
    <maxValue />
    <default>1</default>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Empty">ParameterBoolean</parameter_type>
    <key>sample.edg</key>
    <name>On edge pixel inclusion</name>
    <description>Takes pixels on polygon edge into consideration when building training and validation samples.</description>
    <default>True</default>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>sample.vtr</key>
    <name>Training and validation sample ratio</name>
    <description>Ratio between training and validation samples (0.0 = all training, 1.0 = all validation) (default = 0.5).</description>
    <minValue />
    <maxValue />
    <default>0.5</default>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_String">ParameterString</parameter_type>
    <key>sample.vfn</key>
    <name>Name of the discrimination field</name>
    <description>Name of the field used to discriminate class labels in the input vector data files.</description>
    <default>Class</default>
    <multiline />
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
    <key>classifier</key>
    <name>Classifier to use for the training</name>
    <description>Choice of the classifier to use for the training.</description>
    <options>
      <choices>
        <choice>dt</choice>
        </choices>
    </options>
    <default>0</default>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>classifier.dt.max</key>
    <name>Maximum depth of the tree</name>
    <description>The training algorithm attempts to split each node while its depth is smaller than the maximum possible depth of the tree. The actual depth may be smaller if the other termination criteria are met, and/or if the tree is pruned.</description>
    <minValue />
    <maxValue />
    <default>65535</default>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>classifier.dt.min</key>
    <name>Minimum number of samples in each node</name>
    <description>If all absolute differences between an estimated value in a node and the values of the train samples in this node are smaller than this regression accuracy parameter, then the node will not be split.</description>
    <minValue />
    <maxValue />
    <default>10</default>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>classifier.dt.ra</key>
    <name>Termination criteria for regression tree</name>
    <description />
    <minValue />
    <maxValue />
    <default>0.01</default>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>classifier.dt.cat</key>
    <name>Cluster possible values of a categorical variable into K <= cat clusters to find a suboptimal split</name>
    <description>Cluster possible values of a categorical variable into K <= cat clusters to find a suboptimal split.</description>
    <minValue />
    <maxValue />
    <default>10</default>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>classifier.dt.f</key>
    <name>K-fold cross-validations</name>
    <description>If cv_folds > 1, then it prunes a tree with K-fold cross-validation where K is equal to cv_folds.</description>
    <minValue />
    <maxValue />
    <default>10</default>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Empty">ParameterBoolean</parameter_type>
    <key>classifier.dt.r</key>
    <name>Set Use1seRule flag to false</name>
    <description>If true, then a pruning will be harsher. This will make a tree more compact and more resistant to the training data noise but a bit less accurate.</description>
    <default>True</default>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Empty">ParameterBoolean</parameter_type>
    <key>classifier.dt.t</key>
    <name>Set TruncatePrunedTree flag to false</name>
    <description>If true, then pruned branches are physically removed from the tree.</description>
    <default>True</default>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>rand</key>
    <name>set user defined seed</name>
    <description>Set specific seed. with integer value.</description>
    <minValue />
    <maxValue />
    <default>0</default>
  </parameter>
</root>
 |