File: TrainVectorClassifier-ann.xml

package info (click to toggle)
qgis 2.18.28%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,007,948 kB
  • sloc: cpp: 671,774; python: 158,539; xml: 35,690; ansic: 8,346; sh: 1,766; perl: 1,669; sql: 999; yacc: 836; lex: 461; makefile: 292
file content (237 lines) | stat: -rw-r--r-- 9,788 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
<root>
  <key>TrainVectorClassifier-ann</key>
  <exec>otbcli_TrainVectorClassifier</exec>
  <longname>TrainVectorClassifier (ann)</longname>
  <group>Learning</group>
  <description>Train a classifier based on labeled geometries and a list of features to consider.</description>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputVectorData">ParameterVector</parameter_type>
    <key>io.vd</key>
    <name>Input Vector Data</name>
    <description>Input geometries used for training (note : all geometries from the layer will be used)</description>
    <shapetype />
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputFilename">ParameterFile</parameter_type>
    <key>io.stats</key>
    <name>Input XML image statistics file</name>
    <description>XML file containing mean and variance of each feature.</description>
    <isFolder />
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_OutputFilename">OutputFile</parameter_type>
    <key>io.confmatout</key>
    <name>Output confusion matrix</name>
    <description>Output file containing the confusion matrix (.csv format).</description>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_OutputFilename">OutputFile</parameter_type>
    <key>io.out</key>
    <name>Output model</name>
    <description>Output file containing the model estimated (.txt format).</description>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_StringList">ParameterString</parameter_type>
    <key>feat</key>
    <name>Field names for training features.</name>
    <description>List of field names in the input vector data to be used as features for training.</description>
    <options />
    <default />
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_String">ParameterString</parameter_type>
    <key>cfield</key>
    <name>Field containing the class id for supervision</name>
    <description>Field containing the class id for supervision. Only geometries with this field available will be taken into account.</description>
    <default>class</default>
    <multiline />
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>layer</key>
    <name>Layer Index</name>
    <description>Index of the layer to use in the input vector file.</description>
    <minValue />
    <maxValue />
    <default>0</default>
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputVectorData">ParameterVector</parameter_type>
    <key>valid.vd</key>
    <name>Validation Vector Data</name>
    <description>Geometries used for validation (must contain the same fields used for training, all geometries from the layer will be used)</description>
    <shapetype />
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>valid.layer</key>
    <name>Layer Index</name>
    <description>Index of the layer to use in the validation vector file.</description>
    <minValue />
    <maxValue />
    <default>0</default>
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
    <key>classifier</key>
    <name>Classifier to use for the training</name>
    <description>Choice of the classifier to use for the training.</description>
    <options>
      <choices>
        <choice>ann</choice>
        </choices>
    </options>
    <default>0</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
    <key>classifier.ann.t</key>
    <name>Train Method Type</name>
    <description>Type of training method for the multilayer perceptron (MLP) neural network.</description>
    <options>
      <choices>
        <choice>reg</choice>
        <choice>back</choice>
      </choices>
    </options>
    <default>0</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_StringList">ParameterString</parameter_type>
    <key>classifier.ann.sizes</key>
    <name>Number of neurons in each intermediate layer</name>
    <description>The number of neurons in each intermediate layer (excluding input and output layers).</description>
    <default />
    <multiline />
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
    <key>classifier.ann.f</key>
    <name>Neuron activation function type</name>
    <description>Neuron activation function.</description>
    <options>
      <choices>
        <choice>ident</choice>
        <choice>sig</choice>
        <choice>gau</choice>
      </choices>
    </options>
    <default>1</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>classifier.ann.a</key>
    <name>Alpha parameter of the activation function</name>
    <description>Alpha parameter of the activation function (used only with sigmoid and gaussian functions).</description>
    <minValue />
    <maxValue />
    <default>1</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>classifier.ann.b</key>
    <name>Beta parameter of the activation function</name>
    <description>Beta parameter of the activation function (used only with sigmoid and gaussian functions).</description>
    <minValue />
    <maxValue />
    <default>1</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>classifier.ann.bpdw</key>
    <name>Strength of the weight gradient term in the BACKPROP method</name>
    <description>Strength of the weight gradient term in the BACKPROP method. The recommended value is about 0.1.</description>
    <minValue />
    <maxValue />
    <default>0.1</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>classifier.ann.bpms</key>
    <name>Strength of the momentum term (the difference between weights on the 2 previous iterations)</name>
    <description>Strength of the momentum term (the difference between weights on the 2 previous iterations). This parameter provides some inertia to smooth the random fluctuations of the weights. It can vary from 0 (the feature is disabled) to 1 and beyond. The value 0.1 or so is good enough.</description>
    <minValue />
    <maxValue />
    <default>0.1</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>classifier.ann.rdw</key>
    <name>Initial value Delta_0 of update-values Delta_{ij} in RPROP method</name>
    <description>Initial value Delta_0 of update-values Delta_{ij} in RPROP method (default = 0.1).</description>
    <minValue />
    <maxValue />
    <default>0.1</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>classifier.ann.rdwm</key>
    <name>Update-values lower limit Delta_{min} in RPROP method</name>
    <description>Update-values lower limit Delta_{min} in RPROP method. It must be positive (default = 1e-7).</description>
    <minValue />
    <maxValue />
    <default>1e-07</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
    <key>classifier.ann.term</key>
    <name>Termination criteria</name>
    <description>Termination criteria.</description>
    <options>
      <choices>
        <choice>iter</choice>
        <choice>eps</choice>
        <choice>all</choice>
      </choices>
    </options>
    <default>2</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>classifier.ann.eps</key>
    <name>Epsilon value used in the Termination criteria</name>
    <description>Epsilon value used in the Termination criteria.</description>
    <minValue />
    <maxValue />
    <default>0.01</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>classifier.ann.iter</key>
    <name>Maximum number of iterations used in the Termination criteria</name>
    <description>Maximum number of iterations used in the Termination criteria.</description>
    <minValue />
    <maxValue />
    <default>1000</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>rand</key>
    <name>set user defined seed</name>
    <description>Set specific seed. with integer value.</description>
    <minValue />
    <maxValue />
    <default>0</default>
    <optional>True</optional>
  </parameter>
</root>