File: ImageClassifier.xml

package info (click to toggle)
qgis 2.18.28%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,007,948 kB
  • sloc: cpp: 671,774; python: 158,539; xml: 35,690; ansic: 8,346; sh: 1,766; perl: 1,669; sql: 999; yacc: 836; lex: 461; makefile: 292
file content (72 lines) | stat: -rw-r--r-- 3,266 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
<root>
  <key>ImageClassifier</key>
  <exec>otbcli_ImageClassifier</exec>
  <longname>Image Classification</longname>
  <group>Learning</group>
  <description>Performs a classification of the input image according to a model file.</description>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputImage">ParameterRaster</parameter_type>
    <key>in</key>
    <name>Input Image</name>
    <description>The input image to classify.</description>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputImage">ParameterRaster</parameter_type>
    <key>mask</key>
    <name>Input Mask</name>
    <description>The mask allows restricting classification of the input image to the area where mask pixel values are greater than 0.</description>
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputFilename">ParameterFile</parameter_type>
    <key>model</key>
    <name>Model file</name>
    <description>A model file (produced by TrainImagesClassifier application, maximal class label = 65535).</description>
    <isFolder />
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputFilename">ParameterFile</parameter_type>
    <key>imstat</key>
    <name>Statistics file</name>
    <description>A XML file containing mean and standard deviation to center and reduce samples before classification (produced by ComputeImagesStatistics application).</description>
    <isFolder />
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_OutputImage">OutputRaster</parameter_type>
    <key>out</key>
    <name>Output Image</name>
    <description>Output image containing class labels</description>
    <hidden />
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_OutputImage">OutputRaster</parameter_type>
    <key>confmap</key>
    <name>Confidence map</name>
    <description>Confidence map of the produced classification. The confidence index depends on the model : 
  - LibSVM : difference between the two highest probabilities (needs a model with probability estimates, so that classes probabilities can be computed for each sample)
  - OpenCV
    * Boost : sum of votes
    * DecisionTree : (not supported)
    * GradientBoostedTree : (not supported)
    * KNearestNeighbors : number of neighbors with the same label
    * NeuralNetwork : difference between the two highest responses
    * NormalBayes : (not supported)
    * RandomForest : Confidence (proportion of votes for the majority class). Margin (normalized difference of the votes of the 2 majority classes) is not available for now.
    * SVM : distance to margin (only works for 2-class models)
</description>
    <hidden />
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_RAM">ParameterNumber</parameter_type>
    <key>ram</key>
    <name>Available RAM (Mb)</name>
    <description>Available memory for processing (in MB)</description>
    <minValue />
    <maxValue />
    <default>128</default>
    <optional>True</optional>
  </parameter>
</root>