File: TrainImagesClassifier-libsvm.xml

package info (click to toggle)
qgis 2.18.28%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,007,948 kB
  • sloc: cpp: 671,774; python: 158,539; xml: 35,690; ansic: 8,346; sh: 1,766; perl: 1,669; sql: 999; yacc: 836; lex: 461; makefile: 292
file content (190 lines) | stat: -rw-r--r-- 8,195 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
<root>
  <key>TrainImagesClassifier-libsvm</key>
  <exec>otbcli_TrainImagesClassifier</exec>
  <longname>TrainImagesClassifier (libsvm)</longname>
  <group>Learning</group>
  <description>Train a classifier from multiple pairs of images and training vector data.</description>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputImageList">ParameterMultipleInput</parameter_type>
    <key>io.il</key>
    <name>Input Image List</name>
    <description>A list of input images.</description>
    <datatype />
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputVectorDataList">ParameterMultipleInput</parameter_type>
    <key>io.vd</key>
    <name>Input Vector Data List</name>
    <description>A list of vector data to select the training samples.</description>
    <datatype />
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputFilename">ParameterFile</parameter_type>
    <key>io.imstat</key>
    <name>Input XML image statistics file</name>
    <description>Input XML file containing the mean and the standard deviation of the input images.</description>
    <isFolder />
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_OutputFilename">OutputFile</parameter_type>
    <key>io.confmatout</key>
    <name>Output confusion matrix</name>
    <description>Output file containing the confusion matrix (.csv format).</description>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_OutputFilename">OutputFile</parameter_type>
    <key>io.out</key>
    <name>Output model</name>
    <description>Output file containing the model estimated (.txt format).</description>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>elev.default</key>
    <name>Default elevation</name>
    <description>This parameter allows setting the default height above ellipsoid when there is no DEM available, no coverage for some points or pixels with no_data in the DEM tiles, and no geoid file has been set. This is also used by some application as an average elevation value.</description>
    <minValue />
    <maxValue />
    <default>0</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>sample.mt</key>
    <name>Maximum training sample size per class</name>
    <description>Maximum size per class (in pixels) of the training sample list (default = 1000) (no limit = -1). If equal to -1, then the maximal size of the available training sample list per class will be equal to the surface area of the smallest class multiplied by the training sample ratio.</description>
    <minValue />
    <maxValue />
    <default>1000</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>sample.mv</key>
    <name>Maximum validation sample size per class</name>
    <description>Maximum size per class (in pixels) of the validation sample list (default = 1000) (no limit = -1). If equal to -1, then the maximal size of the available validation sample list per class will be equal to the surface area of the smallest class multiplied by the validation sample ratio.</description>
    <minValue />
    <maxValue />
    <default>1000</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>sample.bm</key>
    <name>Bound sample number by minimum</name>
    <description>Bound the number of samples for each class by the number of available samples by the smaller class. Proportions between training and validation are respected. Default is true (=1).</description>
    <minValue />
    <maxValue />
    <default>1</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Empty">ParameterBoolean</parameter_type>
    <key>sample.edg</key>
    <name>On edge pixel inclusion</name>
    <description>Takes pixels on polygon edge into consideration when building training and validation samples.</description>
    <default>True</default>
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>sample.vtr</key>
    <name>Training and validation sample ratio</name>
    <description>Ratio between training and validation samples (0.0 = all training, 1.0 = all validation) (default = 0.5).</description>
    <minValue />
    <maxValue />
    <default>0.5</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_String">ParameterString</parameter_type>
    <key>sample.vfn</key>
    <name>Name of the discrimination field</name>
    <description>Name of the field used to discriminate class labels in the input vector data files.</description>
    <default>Class</default>
    <multiline />
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
    <key>classifier</key>
    <name>Classifier to use for the training</name>
    <description>Choice of the classifier to use for the training.</description>
    <options>
      <choices>
        <choice>libsvm</choice>
        </choices>
    </options>
    <default>0</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
    <key>classifier.libsvm.k</key>
    <name>SVM Kernel Type</name>
    <description>SVM Kernel Type.</description>
    <options>
      <choices>
        <choice>linear</choice>
        <choice>rbf</choice>
        <choice>poly</choice>
        <choice>sigmoid</choice>
      </choices>
    </options>
    <default>0</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
    <key>classifier.libsvm.m</key>
    <name>SVM Model Type</name>
    <description>Type of SVM formulation.</description>
    <options>
      <choices>
        <choice>csvc</choice>
        <choice>nusvc</choice>
        <choice>oneclass</choice>
      </choices>
    </options>
    <default>0</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>classifier.libsvm.c</key>
    <name>Cost parameter C</name>
    <description>SVM models have a cost parameter C (1 by default) to control the trade-off between training errors and forcing rigid margins.</description>
    <minValue />
    <maxValue />
    <default>1</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Empty">ParameterBoolean</parameter_type>
    <key>classifier.libsvm.opt</key>
    <name>Parameters optimization</name>
    <description>SVM parameters optimization flag.</description>
    <default>True</default>
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Empty">ParameterBoolean</parameter_type>
    <key>classifier.libsvm.prob</key>
    <name>Probability estimation</name>
    <description>Probability estimation flag.</description>
    <default>True</default>
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>rand</key>
    <name>set user defined seed</name>
    <description>Set specific seed. with integer value.</description>
    <minValue />
    <maxValue />
    <default>0</default>
    <optional>True</optional>
  </parameter>
</root>