File: TrainRegression-libsvm.xml

package info (click to toggle)
qgis 2.18.28%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,007,948 kB
  • sloc: cpp: 671,774; python: 158,539; xml: 35,690; ansic: 8,346; sh: 1,766; perl: 1,669; sql: 999; yacc: 836; lex: 461; makefile: 292
file content (176 lines) | stat: -rw-r--r-- 6,670 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
<root>
  <key>TrainRegression-libsvm</key>
  <exec>otbcli_TrainRegression</exec>
  <longname>TrainRegression (libsvm)</longname>
  <group>Learning</group>
  <description>Train a classifier from multiple images to perform regression.</description>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputImageList">ParameterMultipleInput</parameter_type>
    <key>io.il</key>
    <name>Input Image List</name>
    <description>A list of input images. First (n-1) bands should contain the predictor. The last band should contain the output value to predict.</description>
    <datatype />
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputFilename">ParameterFile</parameter_type>
    <key>io.csv</key>
    <name>Input CSV file</name>
    <description>Input CSV file containing the predictors, and the output values in last column. Only used when no input image is given</description>
    <isFolder />
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputFilename">ParameterFile</parameter_type>
    <key>io.imstat</key>
    <name>Input XML image statistics file</name>
    <description>Input XML file containing the mean and the standard deviation of the input images.</description>
    <isFolder />
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_OutputFilename">OutputFile</parameter_type>
    <key>io.out</key>
    <name>Output regression model</name>
    <description>Output file containing the model estimated (.txt format).</description>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>io.mse</key>
    <name>Mean Square Error</name>
    <description>Mean square error computed with the validation predictors</description>
    <minValue />
    <maxValue />
    <default>0.0</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>sample.mt</key>
    <name>Maximum training predictors</name>
    <description>Maximum number of training predictors (default = 1000) (no limit = -1).</description>
    <minValue />
    <maxValue />
    <default>1000</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>sample.mv</key>
    <name>Maximum validation predictors</name>
    <description>Maximum number of validation predictors (default = 1000) (no limit = -1).</description>
    <minValue />
    <maxValue />
    <default>1000</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>sample.vtr</key>
    <name>Training and validation sample ratio</name>
    <description>Ratio between training and validation samples (0.0 = all training, 1.0 = all validation) (default = 0.5).</description>
    <minValue />
    <maxValue />
    <default>0.5</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
    <key>classifier</key>
    <name>Classifier to use for the training</name>
    <description>Choice of the classifier to use for the training.</description>
    <options>
      <choices>
        <choice>libsvm</choice>
        </choices>
    </options>
    <default>0</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
    <key>classifier.libsvm.k</key>
    <name>SVM Kernel Type</name>
    <description>SVM Kernel Type.</description>
    <options>
      <choices>
        <choice>linear</choice>
        <choice>rbf</choice>
        <choice>poly</choice>
        <choice>sigmoid</choice>
      </choices>
    </options>
    <default>0</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
    <key>classifier.libsvm.m</key>
    <name>SVM Model Type</name>
    <description>Type of SVM formulation.</description>
    <options>
      <choices>
        <choice>epssvr</choice>
        <choice>nusvr</choice>
      </choices>
    </options>
    <default>0</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>classifier.libsvm.c</key>
    <name>Cost parameter C</name>
    <description>SVM models have a cost parameter C (1 by default) to control the trade-off between training errors and forcing rigid margins.</description>
    <minValue />
    <maxValue />
    <default>1</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Empty">ParameterBoolean</parameter_type>
    <key>classifier.libsvm.opt</key>
    <name>Parameters optimization</name>
    <description>SVM parameters optimization flag.</description>
    <default>True</default>
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Empty">ParameterBoolean</parameter_type>
    <key>classifier.libsvm.prob</key>
    <name>Probability estimation</name>
    <description>Probability estimation flag.</description>
    <default>True</default>
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>classifier.libsvm.eps</key>
    <name>Epsilon</name>
    <description />
    <minValue />
    <maxValue />
    <default>0.001</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>classifier.libsvm.nu</key>
    <name>Nu</name>
    <description />
    <minValue />
    <maxValue />
    <default>0.5</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>rand</key>
    <name>set user defined seed</name>
    <description>Set specific seed. with integer value.</description>
    <minValue />
    <maxValue />
    <default>0</default>
    <optional>True</optional>
  </parameter>
</root>