1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
<root>
<key>TrainRegression-libsvm</key>
<exec>otbcli_TrainRegression</exec>
<longname>TrainRegression (libsvm)</longname>
<group>Learning</group>
<description>Train a classifier from multiple images to perform regression.</description>
<parameter>
<parameter_type source_parameter_type="ParameterType_InputImageList">ParameterMultipleInput</parameter_type>
<key>io.il</key>
<name>Input Image List</name>
<description>A list of input images. First (n-1) bands should contain the predictor. The last band should contain the output value to predict.</description>
<datatype />
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_InputFilename">ParameterFile</parameter_type>
<key>io.csv</key>
<name>Input CSV file</name>
<description>Input CSV file containing the predictors, and the output values in last column. Only used when no input image is given</description>
<isFolder />
<optional>True</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_InputFilename">ParameterFile</parameter_type>
<key>io.imstat</key>
<name>Input XML image statistics file</name>
<description>Input XML file containing the mean and the standard deviation of the input images.</description>
<isFolder />
<optional>True</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_OutputFilename">OutputFile</parameter_type>
<key>io.out</key>
<name>Output regression model</name>
<description>Output file containing the model estimated (.txt format).</description>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>io.mse</key>
<name>Mean Square Error</name>
<description>Mean square error computed with the validation predictors</description>
<minValue />
<maxValue />
<default>0.0</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>sample.mt</key>
<name>Maximum training predictors</name>
<description>Maximum number of training predictors (default = 1000) (no limit = -1).</description>
<minValue />
<maxValue />
<default>1000</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>sample.mv</key>
<name>Maximum validation predictors</name>
<description>Maximum number of validation predictors (default = 1000) (no limit = -1).</description>
<minValue />
<maxValue />
<default>1000</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>sample.vtr</key>
<name>Training and validation sample ratio</name>
<description>Ratio between training and validation samples (0.0 = all training, 1.0 = all validation) (default = 0.5).</description>
<minValue />
<maxValue />
<default>0.5</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
<key>classifier</key>
<name>Classifier to use for the training</name>
<description>Choice of the classifier to use for the training.</description>
<options>
<choices>
<choice>libsvm</choice>
</choices>
</options>
<default>0</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
<key>classifier.libsvm.k</key>
<name>SVM Kernel Type</name>
<description>SVM Kernel Type.</description>
<options>
<choices>
<choice>linear</choice>
<choice>rbf</choice>
<choice>poly</choice>
<choice>sigmoid</choice>
</choices>
</options>
<default>0</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
<key>classifier.libsvm.m</key>
<name>SVM Model Type</name>
<description>Type of SVM formulation.</description>
<options>
<choices>
<choice>epssvr</choice>
<choice>nusvr</choice>
</choices>
</options>
<default>0</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>classifier.libsvm.c</key>
<name>Cost parameter C</name>
<description>SVM models have a cost parameter C (1 by default) to control the trade-off between training errors and forcing rigid margins.</description>
<minValue />
<maxValue />
<default>1</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Empty">ParameterBoolean</parameter_type>
<key>classifier.libsvm.opt</key>
<name>Parameters optimization</name>
<description>SVM parameters optimization flag.</description>
<default>True</default>
<optional>True</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Empty">ParameterBoolean</parameter_type>
<key>classifier.libsvm.prob</key>
<name>Probability estimation</name>
<description>Probability estimation flag.</description>
<default>True</default>
<optional>True</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>classifier.libsvm.eps</key>
<name>Epsilon</name>
<description />
<minValue />
<maxValue />
<default>0.001</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>classifier.libsvm.nu</key>
<name>Nu</name>
<description />
<minValue />
<maxValue />
<default>0.5</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>rand</key>
<name>set user defined seed</name>
<description>Set specific seed. with integer value.</description>
<minValue />
<maxValue />
<default>0</default>
<optional>True</optional>
</parameter>
</root>
|