File: TrainVectorClassifier-libsvm.xml

package info (click to toggle)
qgis 2.18.28%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,007,948 kB
  • sloc: cpp: 671,774; python: 158,539; xml: 35,690; ansic: 8,346; sh: 1,766; perl: 1,669; sql: 999; yacc: 836; lex: 461; makefile: 292
file content (161 lines) | stat: -rw-r--r-- 6,324 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
<root>
  <key>TrainVectorClassifier-libsvm</key>
  <exec>otbcli_TrainVectorClassifier</exec>
  <longname>TrainVectorClassifier (libsvm)</longname>
  <group>Learning</group>
  <description>Train a classifier based on labeled geometries and a list of features to consider.</description>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputVectorDataList">ParameterMultipleInput</parameter_type>
    <key>io.vd</key>
    <name>Input Vector Data</name>
    <description>Input geometries used for training (note : all geometries from the layer will be used)</description>
    <datatype />
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputFilename">ParameterFile</parameter_type>
    <key>io.stats</key>
    <name>Input XML image statistics file</name>
    <description>XML file containing mean and variance of each feature.</description>
    <isFolder />
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_OutputFilename">OutputFile</parameter_type>
    <key>io.confmatout</key>
    <name>Output confusion matrix</name>
    <description>Output file containing the confusion matrix (.csv format).</description>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_OutputFilename">OutputFile</parameter_type>
    <key>io.out</key>
    <name>Output model</name>
    <description>Output file containing the model estimated (.txt format).</description>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_StringList">ParameterString</parameter_type>
    <key>feat</key>
    <name>Field names for training features.</name>
    <description>List of field names in the input vector data to be used as features for training.</description>
    <options />
    <default />
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_String">ParameterString</parameter_type>
    <key>cfield</key>
    <name>Field containing the class id for supervision</name>
    <description>Field containing the class id for supervision. Only geometries with this field available will be taken into account.</description>
    <default>class</default>
    <multiline />
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>layer</key>
    <name>Layer Index</name>
    <description>Index of the layer to use in the input vector file.</description>
    <minValue />
    <maxValue />
    <default>0</default>
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_InputVectorDataList">ParameterMultipleInput</parameter_type>
    <key>valid.vd</key>
    <name>Validation Vector Data</name>
    <description>Geometries used for validation (must contain the same fields used for training, all geometries from the layer will be used)</description>
    <datatype />
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>valid.layer</key>
    <name>Layer Index</name>
    <description>Index of the layer to use in the validation vector file.</description>
    <minValue />
    <maxValue />
    <default>0</default>
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
    <key>classifier</key>
    <name>Classifier to use for the training</name>
    <description>Choice of the classifier to use for the training.</description>
    <options>
      <choices>
        <choice>libsvm</choice>
        </choices>
    </options>
    <default>0</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
    <key>classifier.libsvm.k</key>
    <name>SVM Kernel Type</name>
    <description>SVM Kernel Type.</description>
    <options>
      <choices>
        <choice>linear</choice>
        <choice>rbf</choice>
        <choice>poly</choice>
        <choice>sigmoid</choice>
      </choices>
    </options>
    <default>0</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
    <key>classifier.libsvm.m</key>
    <name>SVM Model Type</name>
    <description>Type of SVM formulation.</description>
    <options>
      <choices>
        <choice>csvc</choice>
        <choice>nusvc</choice>
        <choice>oneclass</choice>
      </choices>
    </options>
    <default>0</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
    <key>classifier.libsvm.c</key>
    <name>Cost parameter C</name>
    <description>SVM models have a cost parameter C (1 by default) to control the trade-off between training errors and forcing rigid margins.</description>
    <minValue />
    <maxValue />
    <default>1</default>
    <optional>False</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Empty">ParameterBoolean</parameter_type>
    <key>classifier.libsvm.opt</key>
    <name>Parameters optimization</name>
    <description>SVM parameters optimization flag.</description>
    <default>True</default>
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Empty">ParameterBoolean</parameter_type>
    <key>classifier.libsvm.prob</key>
    <name>Probability estimation</name>
    <description>Probability estimation flag.</description>
    <default>True</default>
    <optional>True</optional>
  </parameter>
  <parameter>
    <parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
    <key>rand</key>
    <name>set user defined seed</name>
    <description>Set specific seed. with integer value.</description>
    <minValue />
    <maxValue />
    <default>0</default>
    <optional>True</optional>
  </parameter>
</root>