File: universalkriging.rst

package info (click to toggle)
qgis 2.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 374,696 kB
  • ctags: 66,263
  • sloc: cpp: 396,139; ansic: 241,070; python: 130,609; xml: 14,884; perl: 1,290; sh: 1,287; sql: 500; yacc: 268; lex: 242; makefile: 168
file content (70 lines) | stat: -rw-r--r-- 1,697 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
UNIVERSAL KRIGING
=================

Description
-----------

Parameters
----------

- ``Points[Vector]``:
- ``Attribute[TableField]``:
- ``Create Variance Grid[Boolean]``:
- ``Target Grid[Selection]``:
- ``Variogram Model[Selection]``:
- ``Block Kriging[Boolean]``:
- ``Block Size[Number]``:
- ``Logarithmic Transformation[Boolean]``:
- ``Nugget[Number]``:
- ``Sill[Number]``:
- ``Range[Number]``:
- ``Linear Regression[Number]``:
- ``Exponential Regression[Number]``:
- ``Power Function - A[Number]``:
- ``Power Function - B[Number]``:
- ``Grids[MultipleInput]``:
- ``Grid Interpolation[Selection]``:
- ``Min.Number of m_Points[Number]``:
- ``Max. Number of m_Points[Number]``:
- ``Maximum Search Radius (map units)[Number]``:
- ``Grid Size[Number]``:
- ``Fit Extent[Boolean]``:
- ``Output extent[Extent]``:

Outputs
-------

- ``Grid[Raster]``:
- ``Variance[Raster]``:

See also
---------


Console usage
-------------


::

	processing.runalg('saga:universalkriging', shapes, field, bvariance, target, model, block, dblock, blog, nugget, sill, range, lin_b, exp_b, pow_a, pow_b, grids, interpol, npoints_min, npoints_max, maxradius, user_cell_size, user_fit_extent, output_extent, grid, variance)

	Available options for selection parameters:

	target(Target Grid)
		0 - [0] user defined

	model(Variogram Model)
		0 - [0] Spherical Model
		1 - [1] Exponential Model
		2 - [2] Gaussian Model
		3 - [3] Linear Regression
		4 - [4] Exponential Regression
		5 - [5] Power Function Regression

	interpol(Grid Interpolation)
		0 - [0] Nearest Neighbor
		1 - [1] Bilinear Interpolation
		2 - [2] Inverse Distance Interpolation
		3 - [3] Bicubic Spline Interpolation
		4 - [4] B-Spline Interpolation