1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
|
# -*- coding: utf-8 -*-
"""
***************************************************************************
PreconfiguredAlgorithm.py
---------------------
Date : April 2016
Copyright : (C) 2016 by Victor Olaya
Email : volayaf at gmail dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
__author__ = 'Victor Olaya'
__date__ = 'April 2016'
__copyright__ = '(C) 2016, Victor Olaya'
import os
from qgis.core import (QgsProcessingAlgorithm,
QgsApplication)
from processing.core.GeoAlgorithm import GeoAlgorithm
from copy import deepcopy
import json
class PreconfiguredAlgorithm(GeoAlgorithm):
def __init__(self, descriptionFile):
self.descriptionFile = descriptionFile
with open(self.descriptionFile) as f:
self.description = json.load(f)
GeoAlgorithm.__init__(self)
self._name = self.description["name"]
self._group = self.description["group"]
def group(self):
return self._group
def displayName(self):
return self._name
def name(self):
return os.path.splitext(os.path.basename(self.descriptionFile))[0].lower()
def flags(self):
return QgsProcessingAlgorithm.FlagHideFromModeler
def execute(self, parameters, context=None, feedback=None, model=None):
new_parameters = deepcopy(parameters)
self.alg = QgsApplication.processingRegistry().createAlgorithmById(self.description["algname"])
for name, value in list(self.description["parameters"].items()):
new_parameters[name] = value
for name, value in list(self.description["outputs"].items()):
self.alg.setOutputValue(name, value)
self.alg.execute(new_parameters, feedback)
self.outputs = self.alg.outputs
|