File: qgsabstractgeometry.sip.in

package info (click to toggle)
qgis 3.40.11%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,183,800 kB
  • sloc: cpp: 1,595,841; python: 372,637; xml: 23,474; sh: 3,761; perl: 3,664; ansic: 2,257; sql: 2,137; yacc: 1,068; lex: 577; javascript: 540; lisp: 411; makefile: 154
file content (1177 lines) | stat: -rw-r--r-- 35,290 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
/************************************************************************
 * This file has been generated automatically from                      *
 *                                                                      *
 * src/core/geometry/qgsabstractgeometry.h                              *
 *                                                                      *
 * Do not edit manually ! Edit header and run scripts/sipify.py again   *
 ************************************************************************/







typedef QVector< QgsPoint > QgsPointSequence;
typedef QVector< QVector< QgsPoint > > QgsRingSequence;
typedef QVector< QVector< QVector< QgsPoint > > > QgsCoordinateSequence;


class QgsAbstractGeometry
{
%Docstring(signature="appended")
Abstract base class for all geometries

.. note::

   :py:class:`QgsAbstractGeometry` objects are inherently Cartesian/planar geometries. They have no concept of geodesy, and none
   of the methods or properties exposed from the :py:class:`QgsAbstractGeometry` API (or :py:class:`QgsGeometry` API) utilize
   geodesic calculations. Accordingly, properties like :py:func:`~length` and :py:func:`~area` and spatial operations like :py:func:`~centroid`
   are always calculated using strictly Cartesian mathematics. In contrast, the :py:class:`QgsDistanceArea` class exposes
   methods for working with geodesic calculations and spatial operations on geometries,
   and should be used whenever calculations which account for the curvature of the Earth (or any other celestial body)
   are required.
%End

%TypeHeaderCode
#include "qgsabstractgeometry.h"
%End
%ConvertToSubClassCode
    if ( qgsgeometry_cast<QgsPoint *>( sipCpp ) != nullptr )
      sipType = sipType_QgsPoint;
    else if ( qgsgeometry_cast<QgsLineString *>( sipCpp ) != nullptr )
      sipType = sipType_QgsLineString;
    else if ( qgsgeometry_cast<QgsCircularString *>( sipCpp ) != nullptr )
      sipType = sipType_QgsCircularString;
    else if ( qgsgeometry_cast<QgsCompoundCurve *>( sipCpp ) != nullptr )
      sipType = sipType_QgsCompoundCurve;
    else if ( qgsgeometry_cast<QgsTriangle *>( sipCpp ) != nullptr )
      sipType = sipType_QgsTriangle;
    else if ( qgsgeometry_cast<QgsPolygon *>( sipCpp ) != nullptr )
      sipType = sipType_QgsPolygon;
    else if ( qgsgeometry_cast<QgsCurvePolygon *>( sipCpp ) != nullptr )
      sipType = sipType_QgsCurvePolygon;
    else if ( qgsgeometry_cast<QgsMultiPoint *>( sipCpp ) != nullptr )
      sipType = sipType_QgsMultiPoint;
    else if ( qgsgeometry_cast<QgsMultiLineString *>( sipCpp ) != nullptr )
      sipType = sipType_QgsMultiLineString;
    else if ( qgsgeometry_cast<QgsMultiPolygon *>( sipCpp ) != nullptr )
      sipType = sipType_QgsMultiPolygon;
    else if ( qgsgeometry_cast<QgsMultiSurface *>( sipCpp ) != nullptr )
      sipType = sipType_QgsMultiSurface;
    else if ( qgsgeometry_cast<QgsMultiCurve *>( sipCpp ) != nullptr )
      sipType = sipType_QgsMultiCurve;
    else if ( qgsgeometry_cast<QgsGeometryCollection *>( sipCpp ) != nullptr )
      sipType = sipType_QgsGeometryCollection;
    else
      sipType = 0;
%End
  public:
    static const QMetaObject staticMetaObject;

  public:

    enum SegmentationToleranceType /BaseType=IntEnum/
    {

      MaximumAngle,

      MaximumDifference
    };

    enum AxisOrder /BaseType=IntEnum/
    {

      XY,

      YX
    };

    QgsAbstractGeometry();
    virtual ~QgsAbstractGeometry();
    QgsAbstractGeometry( const QgsAbstractGeometry &geom );

    virtual bool operator==( const QgsAbstractGeometry &other ) const = 0;
    virtual bool operator!=( const QgsAbstractGeometry &other ) const = 0;

    virtual bool fuzzyEqual( const QgsAbstractGeometry &other, double epsilon = 1e-8 ) const = 0;
%Docstring
Performs fuzzy comparison between this geometry and ``other`` using an
``epsilon``.

The comparison is done by examining the specific values (such as x and
y) that define the location of vertices in the geometry.

.. seealso:: :py:func:`fuzzyDistanceEqual`

.. seealso:: :py:func:`QgsGeometryUtilsBase.fuzzyDistanceEqual`

.. versionadded:: 3.36
%End

    virtual bool fuzzyDistanceEqual( const QgsAbstractGeometry &other, double epsilon = 1e-8 ) const = 0;
%Docstring
Performs fuzzy distance comparison between this geometry and ``other``
using an ``epsilon``.

Traditionally, the comparison is done by examining the specific values
(such as x and y) that define the location of vertices in the geometry.
It focuses on the numerical differences or relationships between these
values. On the other hand, comparing distances between points considers
the actual spatial separation or length between the points, regardless
of their coordinate values. This comparison involves measuring the
distance between two points using formulas like the distance formula.
Here, it's the "distance comparison" (fuzzyDistanceEqual).

.. seealso:: :py:func:`fuzzyEqual`

.. seealso:: :py:func:`QgsGeometryUtilsBase.fuzzyEqual`

.. versionadded:: 3.36
%End

    virtual QgsAbstractGeometry *clone() const = 0 /Factory/;
%Docstring
Clones the geometry by performing a deep copy
%End

    virtual int compareTo( const QgsAbstractGeometry *other ) const;
%Docstring
Comparator for sorting of geometry.

.. versionadded:: 3.20
%End

    virtual void clear() = 0;
%Docstring
Clears the geometry, ie reset it to a null geometry
%End

    virtual QgsRectangle boundingBox() const;
%Docstring
Returns the minimal bounding box for the geometry
%End

    virtual QgsBox3D boundingBox3D() const = 0;
%Docstring
Returns the 3D bounding box for the geometry.

.. versionadded:: 3.34
%End


    virtual int dimension() const = 0;
%Docstring
Returns the inherent dimension of the geometry. For example, this is 0
for a point geometry, 1 for a linestring and 2 for a polygon.
%End

    virtual QString geometryType() const = 0;
%Docstring
Returns a unique string representing the geometry type.

.. seealso:: :py:func:`wkbType`

.. seealso:: :py:func:`wktTypeStr`
%End

    Qgis::WkbType wkbType() const /HoldGIL/;
%Docstring
Returns the WKB type of the geometry.

.. seealso:: :py:func:`geometryType`

.. seealso:: :py:func:`wktTypeStr`
%End

    QString wktTypeStr() const;
%Docstring
Returns the WKT type string of the geometry.

.. seealso:: :py:func:`geometryType`

.. seealso:: :py:func:`wkbType`
%End

    bool is3D() const /HoldGIL/;
%Docstring
Returns ``True`` if the geometry is 3D and contains a z-value.

.. seealso:: :py:func:`isMeasure`
%End

    bool isMeasure() const /HoldGIL/;
%Docstring
Returns ``True`` if the geometry contains m values.

.. seealso:: :py:func:`is3D`
%End

    virtual QgsAbstractGeometry *boundary() const = 0 /Factory/;
%Docstring
Returns the closure of the combinatorial boundary of the geometry (ie
the topological boundary of the geometry). For instance, a polygon
geometry will have a boundary consisting of the linestrings for each
ring in the polygon.

:return: boundary for geometry. May be ``None`` for some geometry types.
%End

    virtual void normalize() = 0;
%Docstring
Reorganizes the geometry into a normalized form (or "canonical" form).

Polygon rings will be rearranged so that their starting vertex is the
lower left and ring orientation follows the right hand rule, collections
are ordered by geometry type, and other normalization techniques are
applied. The resultant geometry will be geometrically equivalent to the
original geometry.

.. versionadded:: 3.20
%End


    virtual bool fromWkb( QgsConstWkbPtr &wkb ) = 0;
%Docstring
Sets the geometry from a WKB string. After successful read the wkb
argument will be at the position where the reading has stopped.

.. seealso:: :py:func:`fromWkt`
%End

    virtual bool fromWkt( const QString &wkt ) = 0;
%Docstring
Sets the geometry from a WKT string.

.. seealso:: :py:func:`fromWkb`
%End


    enum WkbFlag /BaseType=IntEnum/
    {
      FlagExportTrianglesAsPolygons,
      FlagExportNanAsDoubleMin,
    };
    typedef QFlags<QgsAbstractGeometry::WkbFlag> WkbFlags;


    virtual int wkbSize( QgsAbstractGeometry::WkbFlags flags = QgsAbstractGeometry::WkbFlags() ) const = 0;
%Docstring
Returns the length of the QByteArray returned by
:py:func:`~QgsAbstractGeometry.asWkb`

The optional ``flags`` argument specifies flags controlling WKB export
behavior

.. versionadded:: 3.16
%End

    virtual QByteArray asWkb( WkbFlags flags = QgsAbstractGeometry::WkbFlags() ) const = 0;
%Docstring
Returns a WKB representation of the geometry.

The optional ``flags`` argument specifies flags controlling WKB export
behavior (since QGIS 3.14).

.. seealso:: :py:func:`asWkt`

.. seealso:: :py:func:`asGml2`

.. seealso:: :py:func:`asGml3`

.. seealso:: :py:func:`asJson`
%End

    virtual QString asWkt( int precision = 17 ) const = 0;
%Docstring
Returns a WKT representation of the geometry.

:param precision: number of decimal places for coordinates

.. seealso:: :py:func:`asWkb`

.. seealso:: :py:func:`asGml2`

.. seealso:: :py:func:`asGml3`

.. seealso:: :py:func:`asJson`
%End

    virtual QDomElement asGml2( QDomDocument &doc, int precision = 17, const QString &ns = "gml", AxisOrder axisOrder = QgsAbstractGeometry::AxisOrder::XY ) const = 0;
%Docstring
Returns a GML2 representation of the geometry.

:param doc: DOM document
:param precision: number of decimal places for coordinates
:param ns: XML namespace
:param axisOrder: Axis order for generated GML

.. seealso:: :py:func:`asWkb`

.. seealso:: :py:func:`asWkt`

.. seealso:: :py:func:`asGml3`

.. seealso:: :py:func:`asJson`
%End

    virtual QDomElement asGml3( QDomDocument &doc, int precision = 17, const QString &ns = "gml", AxisOrder axisOrder = QgsAbstractGeometry::AxisOrder::XY ) const = 0;
%Docstring
Returns a GML3 representation of the geometry.

:param doc: DOM document
:param precision: number of decimal places for coordinates
:param ns: XML namespace
:param axisOrder: Axis order for generated GML

.. seealso:: :py:func:`asWkb`

.. seealso:: :py:func:`asWkt`

.. seealso:: :py:func:`asGml2`

.. seealso:: :py:func:`asJson`
%End

    QString asJson( int precision = 17 );
%Docstring
Returns a GeoJSON representation of the geometry as a QString.

:param precision: number of decimal places for coordinates

.. seealso:: :py:func:`asWkb`

.. seealso:: :py:func:`asWkt`

.. seealso:: :py:func:`asGml2`

.. seealso:: :py:func:`asGml3`

.. seealso:: :py:func:`asJsonObject`
%End


    virtual QString asKml( int precision = 17 ) const = 0;
%Docstring
Returns a KML representation of the geometry.

.. versionadded:: 3.12
%End



    virtual void transform( const QgsCoordinateTransform &ct, Qgis::TransformDirection d = Qgis::TransformDirection::Forward, bool transformZ = false ) throw( QgsCsException ) = 0;
%Docstring
Transforms the geometry using a coordinate transform

:param ct: coordinate transform
:param d: transformation direction
:param transformZ: set to ``True`` to also transform z coordinates. This
                   requires that the z coordinates in the geometry
                   represent height relative to the vertical datum of
                   the source CRS (generally ellipsoidal heights) and
                   are expressed in its vertical units (generally
                   meters). If ``False``, then z coordinates will not be
                   changed by the transform.
%End

    virtual void transform( const QTransform &t, double zTranslate = 0.0, double zScale = 1.0,
                            double mTranslate = 0.0, double mScale = 1.0 ) = 0;
%Docstring
Transforms the x and y components of the geometry using a QTransform
object ``t``.

Optionally, the geometry's z values can be scaled via ``zScale`` and
translated via ``zTranslate``. Similarly, m-values can be scaled via
``mScale`` and translated via ``mTranslate``.
%End

    virtual void draw( QPainter &p ) const = 0;
%Docstring
Draws the geometry using the specified QPainter.

:param p: destination QPainter
%End

    virtual QPainterPath asQPainterPath() const = 0;
%Docstring
Returns the geometry represented as a QPainterPath.

.. warning::

   not all geometry subclasses can be represented by a QPainterPath, e.g.
   points and multipoint geometries will return an empty path.

.. versionadded:: 3.16
%End

    virtual int vertexNumberFromVertexId( QgsVertexId id ) const = 0;
%Docstring
Returns the vertex number corresponding to a vertex ``id``.

The vertex numbers start at 0, so a return value of 0 corresponds to the
first vertex.

Returns -1 if a corresponding vertex could not be found.
%End

    virtual bool nextVertex( QgsVertexId &id, QgsPoint &vertex /Out/ ) const = 0;
%Docstring
Returns next vertex id and coordinates

:param id: initial value should be the starting vertex id. The next
           vertex id will be stored in this variable if found.

:return: - ``False`` if at end
         - vertex: container for found node
%End

    virtual void adjacentVertices( QgsVertexId vertex, QgsVertexId &previousVertex /Out/, QgsVertexId &nextVertex /Out/ ) const = 0;
%Docstring
Returns the vertices adjacent to a specified ``vertex`` within a
geometry.
%End

    virtual QgsCoordinateSequence coordinateSequence() const = 0;
%Docstring
Retrieves the sequence of geometries, rings and nodes.

:return: coordinate sequence
%End

    virtual int nCoordinates() const;
%Docstring
Returns the number of nodes contained in the geometry
%End

    virtual QgsPoint vertexAt( QgsVertexId id ) const = 0;
%Docstring
Returns the point corresponding to a specified vertex id
%End

    virtual double closestSegment( const QgsPoint &pt, QgsPoint &segmentPt /Out/,
                                   QgsVertexId &vertexAfter /Out/,
                                   int *leftOf /Out/ = 0, double epsilon = 4 * DBL_EPSILON ) const = 0;
%Docstring
Searches for the closest segment of the geometry to a given point.

:param pt: specifies the point to find closest segment to
:param epsilon: epsilon for segment snapping

:return: - squared distance to closest segment or negative value on
           error
         - segmentPt: the closest point within the geometry
         - vertexAfter: the ID of the vertex at the end of the closest
           segment
         - leftOf: indicates whether the point lies on the left side of
           the geometry (-1 if point is to the left of the geometry, +1
           if the point is to the right of the geometry, or 0 for cases
           where left/right could not be determined, e.g. point exactly
           on a line) ``False`` if point is to right of segment)
%End


    virtual bool insertVertex( QgsVertexId position, const QgsPoint &vertex ) = 0;
%Docstring
Inserts a vertex into the geometry

:param position: vertex id for position of inserted vertex
:param vertex: vertex to insert

:return: ``True`` if insert was successful

.. seealso:: :py:func:`moveVertex`

.. seealso:: :py:func:`deleteVertex`
%End

    virtual bool moveVertex( QgsVertexId position, const QgsPoint &newPos ) = 0;
%Docstring
Moves a vertex within the geometry

:param position: vertex id for vertex to move
:param newPos: new position of vertex

:return: ``True`` if move was successful

.. seealso:: :py:func:`insertVertex`

.. seealso:: :py:func:`deleteVertex`
%End

    virtual bool deleteVertex( QgsVertexId position ) = 0;
%Docstring
Deletes a vertex within the geometry

:param position: vertex id for vertex to delete

:return: ``True`` if delete was successful

.. seealso:: :py:func:`insertVertex`

.. seealso:: :py:func:`moveVertex`
%End

    virtual double length() const;
%Docstring
Returns the planar, 2-dimensional length of the geometry.

.. warning::

   QgsAbstractGeometry objects are inherently Cartesian/planar geometries, and the length
   returned by this method is calculated using strictly Cartesian mathematics. In contrast,
   the :py:class:`QgsDistanceArea` class exposes methods for calculating the lengths of geometries using
   geodesic calculations which account for the curvature of the Earth (or any other
   celestial body).

.. seealso:: :py:func:`area`

.. seealso:: :py:func:`perimeter`
%End

    virtual double perimeter() const;
%Docstring
Returns the planar, 2-dimensional perimeter of the geometry.

.. warning::

   QgsAbstractGeometry objects are inherently Cartesian/planar geometries, and the perimeter
   returned by this method is calculated using strictly Cartesian mathematics. In contrast,
   the :py:class:`QgsDistanceArea` class exposes methods for calculating the perimeters of geometries using
   geodesic calculations which account for the curvature of the Earth (or any other
   celestial body).

.. seealso:: :py:func:`area`

.. seealso:: :py:func:`length`
%End

    virtual double area() const;
%Docstring
Returns the planar, 2-dimensional area of the geometry.

.. warning::

   QgsAbstractGeometry objects are inherently Cartesian/planar geometries, and the area
   returned by this method is calculated using strictly Cartesian mathematics. In contrast,
   the :py:class:`QgsDistanceArea` class exposes methods for calculating the areas of geometries using
   geodesic calculations which account for the curvature of the Earth (or any other
   celestial body).

.. seealso:: :py:func:`length`

.. seealso:: :py:func:`perimeter`
%End

    virtual double segmentLength( QgsVertexId startVertex ) const = 0;
%Docstring
Returns the length of the segment of the geometry which begins at
``startVertex``.

.. warning::

   QgsAbstractGeometry objects are inherently Cartesian/planar geometries, and the lengths
   returned by this method are calculated using strictly Cartesian mathematics.
%End

    virtual QgsPoint centroid() const;
%Docstring
Returns the centroid of the geometry
%End

    virtual bool isEmpty() const;
%Docstring
Returns ``True`` if the geometry is empty
%End

    virtual bool hasCurvedSegments() const;
%Docstring
Returns ``True`` if the geometry contains curved segments
%End

    virtual bool boundingBoxIntersects( const QgsRectangle &rectangle ) const /HoldGIL/;
%Docstring
Returns ``True`` if the bounding box of this geometry intersects with a
``rectangle``.

Since this test only considers the bounding box of the geometry, is is
very fast to calculate and handles invalid geometries.

.. versionadded:: 3.20
%End

    virtual bool boundingBoxIntersects( const QgsBox3D &box3d ) const /HoldGIL/;
%Docstring
Returns ``True`` if the bounding box of this geometry intersects with a
``box3d``.

Since this test only considers the bounding box of the geometry, is is
very fast to calculate and handles invalid geometries.

.. versionadded:: 3.34
%End

    virtual QgsAbstractGeometry *segmentize( double tolerance = M_PI / 180., SegmentationToleranceType toleranceType = MaximumAngle ) const /Factory/;
%Docstring
Returns a version of the geometry without curves. Caller takes ownership
of the returned geometry.

:param tolerance: segmentation tolerance
:param toleranceType: maximum segmentation angle or maximum difference
                      between approximation and curve
%End

    virtual QgsAbstractGeometry *toCurveType() const = 0 /Factory/;
%Docstring
Returns the geometry converted to the more generic curve type. E.g.
:py:class:`QgsLineString` -> :py:class:`QgsCompoundCurve`,
:py:class:`QgsPolygon` -> :py:class:`QgsCurvePolygon`,
:py:class:`QgsMultiLineString` -> :py:class:`QgsMultiCurve`,
:py:class:`QgsMultiPolygon` -> :py:class:`QgsMultiSurface`

:return: the converted geometry. Caller takes ownership
%End

    virtual QgsAbstractGeometry *snappedToGrid( double hSpacing, double vSpacing, double dSpacing = 0, double mSpacing = 0, bool removeRedundantPoints = false ) const = 0 /Factory/;
%Docstring
Makes a new geometry with all the points or vertices snapped to the
closest point of the grid. Ownership is transferred to the caller.

If the gridified geometry could not be calculated ``None`` will be
returned. It may generate an invalid geometry (in some corner cases). It
can also be thought as rounding the edges and it may be useful for
removing errors.

Example:

.. code-block:: python

       geometry.snappedToGrid(1, 1)

In this case we use a 2D grid of 1x1 to gridify. In this case, it can be
thought like rounding the x and y of all the points/vertices to full
units (remove all decimals).

:param hSpacing: Horizontal spacing of the grid (x axis). 0 to disable.
:param vSpacing: Vertical spacing of the grid (y axis). 0 to disable.
:param dSpacing: Depth spacing of the grid (z axis). 0 (default) to
                 disable.
:param mSpacing: Custom dimension spacing of the grid (m axis). 0
                 (default) to disable.
:param removeRedundantPoints: if ``True``, then points which are
                              redundant (e.g. they represent mid points
                              on a straight line segment) will be
                              skipped (since QGIS 3.38)
%End

    virtual QgsAbstractGeometry *simplifyByDistance( double tolerance ) const = 0 /Factory/;
%Docstring
Simplifies the geometry by applying the Douglas Peucker simplification
by distance algorithm.

The caller takes ownership of the returned geometry. Curved geometries
will be segmentized prior to simplification.

If a simplified geometry cannot be calculated ``None`` will be returned.

The returned geometry may be invalid and contain self-intersecting
rings.

.. versionadded:: 3.38
%End

    virtual bool removeDuplicateNodes( double epsilon = 4 * DBL_EPSILON, bool useZValues = false ) = 0;
%Docstring
Removes duplicate nodes from the geometry, wherever removing the nodes
does not result in a degenerate geometry.

The ``epsilon`` parameter specifies the tolerance for coordinates when
determining that vertices are identical.

By default, z values are not considered when detecting duplicate nodes.
E.g. two nodes with the same x and y coordinate but different z values
will still be considered duplicate and one will be removed. If
``useZValues`` is ``True``, then the z values are also tested and nodes
with the same x and y but different z will be maintained.

Note that duplicate nodes are not tested between different parts of a
multipart geometry. E.g. a multipoint geometry with overlapping points
will not be changed by this method.

The function will return ``True`` if nodes were removed, or ``False`` if
no duplicate nodes were found.
%End

    virtual double vertexAngle( QgsVertexId vertex ) const = 0;
%Docstring
Returns approximate angle at a vertex. This is usually the average angle
between adjacent segments, and can be pictured as the orientation of a
line following the curvature of the geometry at the specified vertex.

:param vertex: the vertex id

:return: rotation in radians, clockwise from north
%End

    virtual int vertexCount( int part = 0, int ring = 0 ) const = 0;
%Docstring
Returns the number of vertices of which this geometry is built.
%End

    virtual int ringCount( int part = 0 ) const = 0;
%Docstring
Returns the number of rings of which this geometry is built.
%End

    virtual int partCount() const = 0;
%Docstring
Returns count of parts contained in the geometry.

.. seealso:: :py:func:`vertexCount`

.. seealso:: :py:func:`ringCount`
%End

    virtual bool addZValue( double zValue = 0 ) = 0;
%Docstring
Adds a z-dimension to the geometry, initialized to a preset value.

:param zValue: initial z-value for all nodes

:return: ``True`` on success

.. seealso:: :py:func:`dropZValue`

.. seealso:: :py:func:`addMValue`
%End

    virtual bool addMValue( double mValue = 0 ) = 0;
%Docstring
Adds a measure to the geometry, initialized to a preset value.

:param mValue: initial m-value for all nodes

:return: ``True`` on success

.. seealso:: :py:func:`dropMValue`

.. seealso:: :py:func:`addZValue`
%End

    virtual bool dropZValue() = 0;
%Docstring
Drops any z-dimensions which exist in the geometry.

:return: ``True`` if Z values were present and have been removed

.. seealso:: :py:func:`addZValue`

.. seealso:: :py:func:`dropMValue`
%End

    virtual bool dropMValue() = 0;
%Docstring
Drops any measure values which exist in the geometry.

:return: ``True`` if m-values were present and have been removed

.. seealso:: :py:func:`addMValue`

.. seealso:: :py:func:`dropZValue`
%End

    virtual void swapXy() = 0;
%Docstring
Swaps the x and y coordinates from the geometry. This can be used to
repair geometries which have accidentally had their latitude and
longitude coordinates reversed.

.. versionadded:: 3.2
%End

    virtual bool convertTo( Qgis::WkbType type );
%Docstring
Converts the geometry to a specified type.

:return: ``True`` if conversion was successful
%End

    virtual const QgsAbstractGeometry *simplifiedTypeRef() const /HoldGIL/;
%Docstring
Returns a reference to the simplest lossless representation of this
geometry, e.g. if the geometry is a multipart geometry type with a
single member geometry, a reference to that part will be returned.

This method employs the following logic:

- For multipart geometries containing a single part only a direct reference to that part will be returned.
- For compound curve geometries containing a single curve only a direct reference to that curve will be returned.

This method returns a reference only, and does not involve any geometry
cloning.

.. note::

   Ownership of the returned geometry is NOT transferred, and remains with the original
   geometry object. Callers must take care to ensure that the original geometry object
   exists for the lifespan of the returned object.

.. versionadded:: 3.20
%End

    virtual bool isValid( QString &error /Out/, Qgis::GeometryValidityFlags flags = Qgis::GeometryValidityFlags() ) const = 0;
%Docstring
Checks validity of the geometry, and returns ``True`` if the geometry is
valid.

:param flags: indicates optional flags which control the type of
              validity checking performed (corresponding to
              :py:class:`Qgis`.GeometryValidityFlags).

:return: - ``True`` if geometry is valid
         - error: the validity error message

.. versionadded:: 3.8
%End

    virtual bool transform( QgsAbstractGeometryTransformer *transformer, QgsFeedback *feedback = 0 ) = 0;
%Docstring
Transforms the vertices from the geometry in place, using the specified
geometry ``transformer`` object.

Depending on the ``transformer`` used, this may result in an invalid
geometry.

The optional ``feedback`` argument can be used to cancel the
transformation before it completes. If this is done, the geometry will
be left in a semi-transformed state.

:return: ``True`` if the geometry was successfully transformed.

.. versionadded:: 3.18
%End


    QgsGeometryPartIterator parts();
%Docstring
Returns Java-style iterator for traversal of parts of the geometry. This
iterator can safely be used to modify parts of the geometry.

Example

.. code-block:: python

       # print the WKT representation of each part in a multi-point geometry
       geometry = QgsMultiPoint.fromWkt( 'MultiPoint( 0 0, 1 1, 2 2)' )
       for part in geometry.parts():
           print(part.asWkt())

       # single part geometries only have one part - this loop will iterate once only
       geometry = QgsLineString.fromWkt( 'LineString( 0 0, 10 10 )' )
       for part in geometry.parts():
           print(part.asWkt())

       # parts can be modified during the iteration
       geometry = QgsMultiPoint.fromWkt( 'MultiPoint( 0 0, 1 1, 2 2)' )
       for part in geometry.parts():
           part.transform(ct)

       # part iteration can also be combined with vertex iteration
       geometry = QgsMultiPolygon.fromWkt( 'MultiPolygon((( 0 0, 0 10, 10 10, 10 0, 0 0 ),( 5 5, 5 6, 6 6, 6 5, 5 5)),((20 2, 22 2, 22 4, 20 4, 20 2)))' )
       for part in geometry.parts():
           for v in part.vertices():
               print(v.x(), v.y())

.. seealso:: :py:func:`vertices`

.. versionadded:: 3.6
%End


    QgsVertexIterator vertices() const;
%Docstring
Returns a read-only, Java-style iterator for traversal of vertices of
all the geometry, including all geometry parts and rings.

.. warning::

   The iterator returns a copy of individual vertices, and accordingly geometries cannot be
   modified using the iterator. See :py:func:`~QgsAbstractGeometry.transformVertices` for a safe method to modify vertices "in-place".

Example

.. code-block:: python

       # print the x and y coordinate for each vertex in a LineString
       geometry = QgsLineString.fromWkt( 'LineString( 0 0, 1 1, 2 2)' )
       for v in geometry.vertices():
           print(v.x(), v.y())

       # vertex iteration includes all parts and rings
       geometry = QgsMultiPolygon.fromWkt( 'MultiPolygon((( 0 0, 0 10, 10 10, 10 0, 0 0 ),( 5 5, 5 6, 6 6, 6 5, 5 5)),((20 2, 22 2, 22 4, 20 4, 20 2)))' )
       for v in geometry.vertices():
           print(v.x(), v.y())

.. seealso:: :py:func:`parts`
%End

    virtual QgsAbstractGeometry *createEmptyWithSameType() const = 0 /Factory/;
%Docstring
Creates a new geometry with the same class and same WKB type as the
original and transfers ownership. To create it, the geometry is default
constructed and then the WKB is changed.

.. seealso:: :py:func:`clone`
%End

  protected:

    int sortIndex() const;
%Docstring
Returns the sort index for the geometry, used in the
:py:func:`~QgsAbstractGeometry.compareTo` method to compare geometries
of different types.

.. versionadded:: 3.20
%End

    virtual int compareToSameClass( const QgsAbstractGeometry *other ) const = 0;
%Docstring
Compares to an ``other`` geometry of the same class, and returns a
integer for sorting of the two geometries.

.. note::

   The actual logic for the sorting is an internal detail only and is subject to change
   between QGIS versions. The result should only be used for direct comparison of geometries
   and not stored for later use.

.. versionadded:: 3.20
%End

    virtual bool hasChildGeometries() const;
%Docstring
Returns whether the geometry has any child geometries (``False`` for
point / curve, ``True`` otherwise)

.. note::

   used for vertex_iterator implementation
%End

    virtual int childCount() const;
%Docstring
Returns number of child geometries (for geometries with child
geometries) or child points (for geometries without child geometries -
i.e. curve / point)

.. note::

   used for vertex_iterator implementation
%End

    virtual QgsAbstractGeometry *childGeometry( int index ) const;
%Docstring
Returns pointer to child geometry (for geometries with child geometries
- i.e. geom. collection / polygon)

.. note::

   used for vertex_iterator implementation
%End

    virtual QgsPoint childPoint( int index ) const;
%Docstring
Returns point at index (for geometries without child geometries - i.e.
curve / point)

.. note::

   used for vertex_iterator implementation
%End

  protected:

    void setZMTypeFromSubGeometry( const QgsAbstractGeometry *subggeom, Qgis::WkbType baseGeomType );
%Docstring
Updates the geometry type based on whether sub geometries contain z or m
values.
%End

    virtual QgsRectangle calculateBoundingBox() const;
%Docstring
Default calculator for the minimal bounding box for the geometry.
Derived classes should override this method if a more efficient bounding
box calculation is available.
%End

    virtual QgsBox3D calculateBoundingBox3D() const;
%Docstring
Calculates the minimal 3D bounding box for the geometry.

.. seealso:: :py:func:`calculateBoundingBox`

.. versionadded:: 3.34
%End

    virtual void clearCache() const;
%Docstring
Clears any cached parameters associated with the geometry, e.g.,
bounding boxes
%End

};




class QgsVertexIterator
{
%Docstring(signature="appended")
Java-style iterator for traversal of vertices of a geometry
%End

%TypeHeaderCode
#include "qgsabstractgeometry.h"
%End
  public:

    QgsVertexIterator();

    QgsVertexIterator( const QgsAbstractGeometry *geometry );
%Docstring
Constructs iterator for the given geometry
%End

    bool hasNext() const;
%Docstring
Find out whether there are more vertices
%End

    QgsPoint next();
%Docstring
Returns next vertex of the geometry (undefined behavior if
:py:func:`~QgsVertexIterator.hasNext` returns ``False`` before calling
:py:func:`~QgsVertexIterator.next`)
%End

    QgsVertexIterator *__iter__();
%MethodCode
    sipRes = sipCpp;
%End

    SIP_PYOBJECT __next__() /TypeHint="QgsPoint"/;
%MethodCode
    if ( sipCpp->hasNext() )
      sipRes = sipConvertFromType( new QgsPoint( sipCpp->next() ), sipType_QgsPoint, Py_None );
    else
      PyErr_SetString( PyExc_StopIteration, "" );
%End

};

class QgsGeometryPartIterator
{
%Docstring(signature="appended")
Java-style iterator for traversal of parts of a geometry

.. versionadded:: 3.6
%End

%TypeHeaderCode
#include "qgsabstractgeometry.h"
%End
  public:

    QgsGeometryPartIterator();

    QgsGeometryPartIterator( QgsAbstractGeometry *geometry );
%Docstring
Constructs iterator for the given geometry
%End

    bool hasNext() const /HoldGIL/;
%Docstring
Find out whether there are more parts
%End

    QgsAbstractGeometry *next();
%Docstring
Returns next part of the geometry (undefined behavior if
:py:func:`~QgsGeometryPartIterator.hasNext` returns ``False`` before
calling :py:func:`~QgsGeometryPartIterator.next`)
%End

    QgsGeometryPartIterator *__iter__();
%MethodCode
    sipRes = sipCpp;
%End

    SIP_PYOBJECT __next__() /TypeHint="QgsAbstractGeometry"/;
%MethodCode
    if ( sipCpp->hasNext() )
      sipRes = sipConvertFromType( sipCpp->next(), sipType_QgsAbstractGeometry, NULL );
    else
      PyErr_SetString( PyExc_StopIteration, "" );
%End

};


class QgsGeometryConstPartIterator
{
%Docstring(signature="appended")
Java-style iterator for const traversal of parts of a geometry

.. versionadded:: 3.6
%End

%TypeHeaderCode
#include "qgsabstractgeometry.h"
%End
  public:

    QgsGeometryConstPartIterator();

    QgsGeometryConstPartIterator( const QgsAbstractGeometry *geometry );
%Docstring
Constructs iterator for the given geometry
%End

    bool hasNext() const /HoldGIL/;
%Docstring
Find out whether there are more parts
%End

    const QgsAbstractGeometry *next();
%Docstring
Returns next part of the geometry (undefined behavior if
:py:func:`~QgsGeometryConstPartIterator.hasNext` returns ``False``
before calling :py:func:`~QgsGeometryConstPartIterator.next`)
%End

    QgsGeometryConstPartIterator *__iter__();
%MethodCode
    sipRes = sipCpp;
%End

    SIP_PYOBJECT __next__() /TypeHint="QgsAbstractGeometry"/;
%MethodCode
    if ( sipCpp->hasNext() )
      sipRes = sipConvertFromType( const_cast< QgsAbstractGeometry * >( sipCpp->next() ), sipType_QgsAbstractGeometry, NULL );
    else
      PyErr_SetString( PyExc_StopIteration, "" );
%End

};

QFlags<QgsAbstractGeometry::WkbFlag> operator|(QgsAbstractGeometry::WkbFlag f1, QFlags<QgsAbstractGeometry::WkbFlag> f2);


/************************************************************************
 * This file has been generated automatically from                      *
 *                                                                      *
 * src/core/geometry/qgsabstractgeometry.h                              *
 *                                                                      *
 * Do not edit manually ! Edit header and run scripts/sipify.py again   *
 ************************************************************************/