1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
|
/************************************************************************
* This file has been generated automatically from *
* *
* src/core/geometry/qgsabstractgeometry.h *
* *
* Do not edit manually ! Edit header and run scripts/sipify.py again *
************************************************************************/
typedef QVector< QgsPoint > QgsPointSequence;
typedef QVector< QVector< QgsPoint > > QgsRingSequence;
typedef QVector< QVector< QVector< QgsPoint > > > QgsCoordinateSequence;
class QgsAbstractGeometry
{
%Docstring(signature="appended")
Abstract base class for all geometries
.. note::
:py:class:`QgsAbstractGeometry` objects are inherently Cartesian/planar geometries. They have no concept of geodesy, and none
of the methods or properties exposed from the :py:class:`QgsAbstractGeometry` API (or :py:class:`QgsGeometry` API) utilize
geodesic calculations. Accordingly, properties like :py:func:`~length` and :py:func:`~area` and spatial operations like :py:func:`~centroid`
are always calculated using strictly Cartesian mathematics. In contrast, the :py:class:`QgsDistanceArea` class exposes
methods for working with geodesic calculations and spatial operations on geometries,
and should be used whenever calculations which account for the curvature of the Earth (or any other celestial body)
are required.
%End
%TypeHeaderCode
#include "qgsabstractgeometry.h"
%End
%ConvertToSubClassCode
if ( qgsgeometry_cast<QgsPoint *>( sipCpp ) != nullptr )
sipType = sipType_QgsPoint;
else if ( qgsgeometry_cast<QgsLineString *>( sipCpp ) != nullptr )
sipType = sipType_QgsLineString;
else if ( qgsgeometry_cast<QgsCircularString *>( sipCpp ) != nullptr )
sipType = sipType_QgsCircularString;
else if ( qgsgeometry_cast<QgsCompoundCurve *>( sipCpp ) != nullptr )
sipType = sipType_QgsCompoundCurve;
else if ( qgsgeometry_cast<QgsTriangle *>( sipCpp ) != nullptr )
sipType = sipType_QgsTriangle;
else if ( qgsgeometry_cast<QgsPolygon *>( sipCpp ) != nullptr )
sipType = sipType_QgsPolygon;
else if ( qgsgeometry_cast<QgsCurvePolygon *>( sipCpp ) != nullptr )
sipType = sipType_QgsCurvePolygon;
else if ( qgsgeometry_cast<QgsMultiPoint *>( sipCpp ) != nullptr )
sipType = sipType_QgsMultiPoint;
else if ( qgsgeometry_cast<QgsMultiLineString *>( sipCpp ) != nullptr )
sipType = sipType_QgsMultiLineString;
else if ( qgsgeometry_cast<QgsMultiPolygon *>( sipCpp ) != nullptr )
sipType = sipType_QgsMultiPolygon;
else if ( qgsgeometry_cast<QgsMultiSurface *>( sipCpp ) != nullptr )
sipType = sipType_QgsMultiSurface;
else if ( qgsgeometry_cast<QgsMultiCurve *>( sipCpp ) != nullptr )
sipType = sipType_QgsMultiCurve;
else if ( qgsgeometry_cast<QgsGeometryCollection *>( sipCpp ) != nullptr )
sipType = sipType_QgsGeometryCollection;
else
sipType = 0;
%End
public:
static const QMetaObject staticMetaObject;
public:
enum SegmentationToleranceType /BaseType=IntEnum/
{
MaximumAngle,
MaximumDifference
};
enum AxisOrder /BaseType=IntEnum/
{
XY,
YX
};
QgsAbstractGeometry();
virtual ~QgsAbstractGeometry();
QgsAbstractGeometry( const QgsAbstractGeometry &geom );
virtual bool operator==( const QgsAbstractGeometry &other ) const = 0;
virtual bool operator!=( const QgsAbstractGeometry &other ) const = 0;
virtual bool fuzzyEqual( const QgsAbstractGeometry &other, double epsilon = 1e-8 ) const = 0;
%Docstring
Performs fuzzy comparison between this geometry and ``other`` using an
``epsilon``.
The comparison is done by examining the specific values (such as x and
y) that define the location of vertices in the geometry.
.. seealso:: :py:func:`fuzzyDistanceEqual`
.. seealso:: :py:func:`QgsGeometryUtilsBase.fuzzyDistanceEqual`
.. versionadded:: 3.36
%End
virtual bool fuzzyDistanceEqual( const QgsAbstractGeometry &other, double epsilon = 1e-8 ) const = 0;
%Docstring
Performs fuzzy distance comparison between this geometry and ``other``
using an ``epsilon``.
Traditionally, the comparison is done by examining the specific values
(such as x and y) that define the location of vertices in the geometry.
It focuses on the numerical differences or relationships between these
values. On the other hand, comparing distances between points considers
the actual spatial separation or length between the points, regardless
of their coordinate values. This comparison involves measuring the
distance between two points using formulas like the distance formula.
Here, it's the "distance comparison" (fuzzyDistanceEqual).
.. seealso:: :py:func:`fuzzyEqual`
.. seealso:: :py:func:`QgsGeometryUtilsBase.fuzzyEqual`
.. versionadded:: 3.36
%End
virtual QgsAbstractGeometry *clone() const = 0 /Factory/;
%Docstring
Clones the geometry by performing a deep copy
%End
virtual int compareTo( const QgsAbstractGeometry *other ) const;
%Docstring
Comparator for sorting of geometry.
.. versionadded:: 3.20
%End
virtual void clear() = 0;
%Docstring
Clears the geometry, ie reset it to a null geometry
%End
virtual QgsRectangle boundingBox() const;
%Docstring
Returns the minimal bounding box for the geometry
%End
virtual QgsBox3D boundingBox3D() const = 0;
%Docstring
Returns the 3D bounding box for the geometry.
.. versionadded:: 3.34
%End
virtual int dimension() const = 0;
%Docstring
Returns the inherent dimension of the geometry. For example, this is 0
for a point geometry, 1 for a linestring and 2 for a polygon.
%End
virtual QString geometryType() const = 0;
%Docstring
Returns a unique string representing the geometry type.
.. seealso:: :py:func:`wkbType`
.. seealso:: :py:func:`wktTypeStr`
%End
Qgis::WkbType wkbType() const /HoldGIL/;
%Docstring
Returns the WKB type of the geometry.
.. seealso:: :py:func:`geometryType`
.. seealso:: :py:func:`wktTypeStr`
%End
QString wktTypeStr() const;
%Docstring
Returns the WKT type string of the geometry.
.. seealso:: :py:func:`geometryType`
.. seealso:: :py:func:`wkbType`
%End
bool is3D() const /HoldGIL/;
%Docstring
Returns ``True`` if the geometry is 3D and contains a z-value.
.. seealso:: :py:func:`isMeasure`
%End
bool isMeasure() const /HoldGIL/;
%Docstring
Returns ``True`` if the geometry contains m values.
.. seealso:: :py:func:`is3D`
%End
virtual QgsAbstractGeometry *boundary() const = 0 /Factory/;
%Docstring
Returns the closure of the combinatorial boundary of the geometry (ie
the topological boundary of the geometry). For instance, a polygon
geometry will have a boundary consisting of the linestrings for each
ring in the polygon.
:return: boundary for geometry. May be ``None`` for some geometry types.
%End
virtual void normalize() = 0;
%Docstring
Reorganizes the geometry into a normalized form (or "canonical" form).
Polygon rings will be rearranged so that their starting vertex is the
lower left and ring orientation follows the right hand rule, collections
are ordered by geometry type, and other normalization techniques are
applied. The resultant geometry will be geometrically equivalent to the
original geometry.
.. versionadded:: 3.20
%End
virtual bool fromWkb( QgsConstWkbPtr &wkb ) = 0;
%Docstring
Sets the geometry from a WKB string. After successful read the wkb
argument will be at the position where the reading has stopped.
.. seealso:: :py:func:`fromWkt`
%End
virtual bool fromWkt( const QString &wkt ) = 0;
%Docstring
Sets the geometry from a WKT string.
.. seealso:: :py:func:`fromWkb`
%End
enum WkbFlag /BaseType=IntEnum/
{
FlagExportTrianglesAsPolygons,
FlagExportNanAsDoubleMin,
};
typedef QFlags<QgsAbstractGeometry::WkbFlag> WkbFlags;
virtual int wkbSize( QgsAbstractGeometry::WkbFlags flags = QgsAbstractGeometry::WkbFlags() ) const = 0;
%Docstring
Returns the length of the QByteArray returned by
:py:func:`~QgsAbstractGeometry.asWkb`
The optional ``flags`` argument specifies flags controlling WKB export
behavior
.. versionadded:: 3.16
%End
virtual QByteArray asWkb( WkbFlags flags = QgsAbstractGeometry::WkbFlags() ) const = 0;
%Docstring
Returns a WKB representation of the geometry.
The optional ``flags`` argument specifies flags controlling WKB export
behavior (since QGIS 3.14).
.. seealso:: :py:func:`asWkt`
.. seealso:: :py:func:`asGml2`
.. seealso:: :py:func:`asGml3`
.. seealso:: :py:func:`asJson`
%End
virtual QString asWkt( int precision = 17 ) const = 0;
%Docstring
Returns a WKT representation of the geometry.
:param precision: number of decimal places for coordinates
.. seealso:: :py:func:`asWkb`
.. seealso:: :py:func:`asGml2`
.. seealso:: :py:func:`asGml3`
.. seealso:: :py:func:`asJson`
%End
virtual QDomElement asGml2( QDomDocument &doc, int precision = 17, const QString &ns = "gml", AxisOrder axisOrder = QgsAbstractGeometry::AxisOrder::XY ) const = 0;
%Docstring
Returns a GML2 representation of the geometry.
:param doc: DOM document
:param precision: number of decimal places for coordinates
:param ns: XML namespace
:param axisOrder: Axis order for generated GML
.. seealso:: :py:func:`asWkb`
.. seealso:: :py:func:`asWkt`
.. seealso:: :py:func:`asGml3`
.. seealso:: :py:func:`asJson`
%End
virtual QDomElement asGml3( QDomDocument &doc, int precision = 17, const QString &ns = "gml", AxisOrder axisOrder = QgsAbstractGeometry::AxisOrder::XY ) const = 0;
%Docstring
Returns a GML3 representation of the geometry.
:param doc: DOM document
:param precision: number of decimal places for coordinates
:param ns: XML namespace
:param axisOrder: Axis order for generated GML
.. seealso:: :py:func:`asWkb`
.. seealso:: :py:func:`asWkt`
.. seealso:: :py:func:`asGml2`
.. seealso:: :py:func:`asJson`
%End
QString asJson( int precision = 17 );
%Docstring
Returns a GeoJSON representation of the geometry as a QString.
:param precision: number of decimal places for coordinates
.. seealso:: :py:func:`asWkb`
.. seealso:: :py:func:`asWkt`
.. seealso:: :py:func:`asGml2`
.. seealso:: :py:func:`asGml3`
.. seealso:: :py:func:`asJsonObject`
%End
virtual QString asKml( int precision = 17 ) const = 0;
%Docstring
Returns a KML representation of the geometry.
.. versionadded:: 3.12
%End
virtual void transform( const QgsCoordinateTransform &ct, Qgis::TransformDirection d = Qgis::TransformDirection::Forward, bool transformZ = false ) throw( QgsCsException ) = 0;
%Docstring
Transforms the geometry using a coordinate transform
:param ct: coordinate transform
:param d: transformation direction
:param transformZ: set to ``True`` to also transform z coordinates. This
requires that the z coordinates in the geometry
represent height relative to the vertical datum of
the source CRS (generally ellipsoidal heights) and
are expressed in its vertical units (generally
meters). If ``False``, then z coordinates will not be
changed by the transform.
%End
virtual void transform( const QTransform &t, double zTranslate = 0.0, double zScale = 1.0,
double mTranslate = 0.0, double mScale = 1.0 ) = 0;
%Docstring
Transforms the x and y components of the geometry using a QTransform
object ``t``.
Optionally, the geometry's z values can be scaled via ``zScale`` and
translated via ``zTranslate``. Similarly, m-values can be scaled via
``mScale`` and translated via ``mTranslate``.
%End
virtual void draw( QPainter &p ) const = 0;
%Docstring
Draws the geometry using the specified QPainter.
:param p: destination QPainter
%End
virtual QPainterPath asQPainterPath() const = 0;
%Docstring
Returns the geometry represented as a QPainterPath.
.. warning::
not all geometry subclasses can be represented by a QPainterPath, e.g.
points and multipoint geometries will return an empty path.
.. versionadded:: 3.16
%End
virtual int vertexNumberFromVertexId( QgsVertexId id ) const = 0;
%Docstring
Returns the vertex number corresponding to a vertex ``id``.
The vertex numbers start at 0, so a return value of 0 corresponds to the
first vertex.
Returns -1 if a corresponding vertex could not be found.
%End
virtual bool nextVertex( QgsVertexId &id, QgsPoint &vertex /Out/ ) const = 0;
%Docstring
Returns next vertex id and coordinates
:param id: initial value should be the starting vertex id. The next
vertex id will be stored in this variable if found.
:return: - ``False`` if at end
- vertex: container for found node
%End
virtual void adjacentVertices( QgsVertexId vertex, QgsVertexId &previousVertex /Out/, QgsVertexId &nextVertex /Out/ ) const = 0;
%Docstring
Returns the vertices adjacent to a specified ``vertex`` within a
geometry.
%End
virtual QgsCoordinateSequence coordinateSequence() const = 0;
%Docstring
Retrieves the sequence of geometries, rings and nodes.
:return: coordinate sequence
%End
virtual int nCoordinates() const;
%Docstring
Returns the number of nodes contained in the geometry
%End
virtual QgsPoint vertexAt( QgsVertexId id ) const = 0;
%Docstring
Returns the point corresponding to a specified vertex id
%End
virtual double closestSegment( const QgsPoint &pt, QgsPoint &segmentPt /Out/,
QgsVertexId &vertexAfter /Out/,
int *leftOf /Out/ = 0, double epsilon = 4 * DBL_EPSILON ) const = 0;
%Docstring
Searches for the closest segment of the geometry to a given point.
:param pt: specifies the point to find closest segment to
:param epsilon: epsilon for segment snapping
:return: - squared distance to closest segment or negative value on
error
- segmentPt: the closest point within the geometry
- vertexAfter: the ID of the vertex at the end of the closest
segment
- leftOf: indicates whether the point lies on the left side of
the geometry (-1 if point is to the left of the geometry, +1
if the point is to the right of the geometry, or 0 for cases
where left/right could not be determined, e.g. point exactly
on a line) ``False`` if point is to right of segment)
%End
virtual bool insertVertex( QgsVertexId position, const QgsPoint &vertex ) = 0;
%Docstring
Inserts a vertex into the geometry
:param position: vertex id for position of inserted vertex
:param vertex: vertex to insert
:return: ``True`` if insert was successful
.. seealso:: :py:func:`moveVertex`
.. seealso:: :py:func:`deleteVertex`
%End
virtual bool moveVertex( QgsVertexId position, const QgsPoint &newPos ) = 0;
%Docstring
Moves a vertex within the geometry
:param position: vertex id for vertex to move
:param newPos: new position of vertex
:return: ``True`` if move was successful
.. seealso:: :py:func:`insertVertex`
.. seealso:: :py:func:`deleteVertex`
%End
virtual bool deleteVertex( QgsVertexId position ) = 0;
%Docstring
Deletes a vertex within the geometry
:param position: vertex id for vertex to delete
:return: ``True`` if delete was successful
.. seealso:: :py:func:`insertVertex`
.. seealso:: :py:func:`moveVertex`
%End
virtual double length() const;
%Docstring
Returns the planar, 2-dimensional length of the geometry.
.. warning::
QgsAbstractGeometry objects are inherently Cartesian/planar geometries, and the length
returned by this method is calculated using strictly Cartesian mathematics. In contrast,
the :py:class:`QgsDistanceArea` class exposes methods for calculating the lengths of geometries using
geodesic calculations which account for the curvature of the Earth (or any other
celestial body).
.. seealso:: :py:func:`area`
.. seealso:: :py:func:`perimeter`
%End
virtual double perimeter() const;
%Docstring
Returns the planar, 2-dimensional perimeter of the geometry.
.. warning::
QgsAbstractGeometry objects are inherently Cartesian/planar geometries, and the perimeter
returned by this method is calculated using strictly Cartesian mathematics. In contrast,
the :py:class:`QgsDistanceArea` class exposes methods for calculating the perimeters of geometries using
geodesic calculations which account for the curvature of the Earth (or any other
celestial body).
.. seealso:: :py:func:`area`
.. seealso:: :py:func:`length`
%End
virtual double area() const;
%Docstring
Returns the planar, 2-dimensional area of the geometry.
.. warning::
QgsAbstractGeometry objects are inherently Cartesian/planar geometries, and the area
returned by this method is calculated using strictly Cartesian mathematics. In contrast,
the :py:class:`QgsDistanceArea` class exposes methods for calculating the areas of geometries using
geodesic calculations which account for the curvature of the Earth (or any other
celestial body).
.. seealso:: :py:func:`length`
.. seealso:: :py:func:`perimeter`
%End
virtual double segmentLength( QgsVertexId startVertex ) const = 0;
%Docstring
Returns the length of the segment of the geometry which begins at
``startVertex``.
.. warning::
QgsAbstractGeometry objects are inherently Cartesian/planar geometries, and the lengths
returned by this method are calculated using strictly Cartesian mathematics.
%End
virtual QgsPoint centroid() const;
%Docstring
Returns the centroid of the geometry
%End
virtual bool isEmpty() const;
%Docstring
Returns ``True`` if the geometry is empty
%End
virtual bool hasCurvedSegments() const;
%Docstring
Returns ``True`` if the geometry contains curved segments
%End
virtual bool boundingBoxIntersects( const QgsRectangle &rectangle ) const /HoldGIL/;
%Docstring
Returns ``True`` if the bounding box of this geometry intersects with a
``rectangle``.
Since this test only considers the bounding box of the geometry, is is
very fast to calculate and handles invalid geometries.
.. versionadded:: 3.20
%End
virtual bool boundingBoxIntersects( const QgsBox3D &box3d ) const /HoldGIL/;
%Docstring
Returns ``True`` if the bounding box of this geometry intersects with a
``box3d``.
Since this test only considers the bounding box of the geometry, is is
very fast to calculate and handles invalid geometries.
.. versionadded:: 3.34
%End
virtual QgsAbstractGeometry *segmentize( double tolerance = M_PI / 180., SegmentationToleranceType toleranceType = MaximumAngle ) const /Factory/;
%Docstring
Returns a version of the geometry without curves. Caller takes ownership
of the returned geometry.
:param tolerance: segmentation tolerance
:param toleranceType: maximum segmentation angle or maximum difference
between approximation and curve
%End
virtual QgsAbstractGeometry *toCurveType() const = 0 /Factory/;
%Docstring
Returns the geometry converted to the more generic curve type. E.g.
:py:class:`QgsLineString` -> :py:class:`QgsCompoundCurve`,
:py:class:`QgsPolygon` -> :py:class:`QgsCurvePolygon`,
:py:class:`QgsMultiLineString` -> :py:class:`QgsMultiCurve`,
:py:class:`QgsMultiPolygon` -> :py:class:`QgsMultiSurface`
:return: the converted geometry. Caller takes ownership
%End
virtual QgsAbstractGeometry *snappedToGrid( double hSpacing, double vSpacing, double dSpacing = 0, double mSpacing = 0, bool removeRedundantPoints = false ) const = 0 /Factory/;
%Docstring
Makes a new geometry with all the points or vertices snapped to the
closest point of the grid. Ownership is transferred to the caller.
If the gridified geometry could not be calculated ``None`` will be
returned. It may generate an invalid geometry (in some corner cases). It
can also be thought as rounding the edges and it may be useful for
removing errors.
Example:
.. code-block:: python
geometry.snappedToGrid(1, 1)
In this case we use a 2D grid of 1x1 to gridify. In this case, it can be
thought like rounding the x and y of all the points/vertices to full
units (remove all decimals).
:param hSpacing: Horizontal spacing of the grid (x axis). 0 to disable.
:param vSpacing: Vertical spacing of the grid (y axis). 0 to disable.
:param dSpacing: Depth spacing of the grid (z axis). 0 (default) to
disable.
:param mSpacing: Custom dimension spacing of the grid (m axis). 0
(default) to disable.
:param removeRedundantPoints: if ``True``, then points which are
redundant (e.g. they represent mid points
on a straight line segment) will be
skipped (since QGIS 3.38)
%End
virtual QgsAbstractGeometry *simplifyByDistance( double tolerance ) const = 0 /Factory/;
%Docstring
Simplifies the geometry by applying the Douglas Peucker simplification
by distance algorithm.
The caller takes ownership of the returned geometry. Curved geometries
will be segmentized prior to simplification.
If a simplified geometry cannot be calculated ``None`` will be returned.
The returned geometry may be invalid and contain self-intersecting
rings.
.. versionadded:: 3.38
%End
virtual bool removeDuplicateNodes( double epsilon = 4 * DBL_EPSILON, bool useZValues = false ) = 0;
%Docstring
Removes duplicate nodes from the geometry, wherever removing the nodes
does not result in a degenerate geometry.
The ``epsilon`` parameter specifies the tolerance for coordinates when
determining that vertices are identical.
By default, z values are not considered when detecting duplicate nodes.
E.g. two nodes with the same x and y coordinate but different z values
will still be considered duplicate and one will be removed. If
``useZValues`` is ``True``, then the z values are also tested and nodes
with the same x and y but different z will be maintained.
Note that duplicate nodes are not tested between different parts of a
multipart geometry. E.g. a multipoint geometry with overlapping points
will not be changed by this method.
The function will return ``True`` if nodes were removed, or ``False`` if
no duplicate nodes were found.
%End
virtual double vertexAngle( QgsVertexId vertex ) const = 0;
%Docstring
Returns approximate angle at a vertex. This is usually the average angle
between adjacent segments, and can be pictured as the orientation of a
line following the curvature of the geometry at the specified vertex.
:param vertex: the vertex id
:return: rotation in radians, clockwise from north
%End
virtual int vertexCount( int part = 0, int ring = 0 ) const = 0;
%Docstring
Returns the number of vertices of which this geometry is built.
%End
virtual int ringCount( int part = 0 ) const = 0;
%Docstring
Returns the number of rings of which this geometry is built.
%End
virtual int partCount() const = 0;
%Docstring
Returns count of parts contained in the geometry.
.. seealso:: :py:func:`vertexCount`
.. seealso:: :py:func:`ringCount`
%End
virtual bool addZValue( double zValue = 0 ) = 0;
%Docstring
Adds a z-dimension to the geometry, initialized to a preset value.
:param zValue: initial z-value for all nodes
:return: ``True`` on success
.. seealso:: :py:func:`dropZValue`
.. seealso:: :py:func:`addMValue`
%End
virtual bool addMValue( double mValue = 0 ) = 0;
%Docstring
Adds a measure to the geometry, initialized to a preset value.
:param mValue: initial m-value for all nodes
:return: ``True`` on success
.. seealso:: :py:func:`dropMValue`
.. seealso:: :py:func:`addZValue`
%End
virtual bool dropZValue() = 0;
%Docstring
Drops any z-dimensions which exist in the geometry.
:return: ``True`` if Z values were present and have been removed
.. seealso:: :py:func:`addZValue`
.. seealso:: :py:func:`dropMValue`
%End
virtual bool dropMValue() = 0;
%Docstring
Drops any measure values which exist in the geometry.
:return: ``True`` if m-values were present and have been removed
.. seealso:: :py:func:`addMValue`
.. seealso:: :py:func:`dropZValue`
%End
virtual void swapXy() = 0;
%Docstring
Swaps the x and y coordinates from the geometry. This can be used to
repair geometries which have accidentally had their latitude and
longitude coordinates reversed.
.. versionadded:: 3.2
%End
virtual bool convertTo( Qgis::WkbType type );
%Docstring
Converts the geometry to a specified type.
:return: ``True`` if conversion was successful
%End
virtual const QgsAbstractGeometry *simplifiedTypeRef() const /HoldGIL/;
%Docstring
Returns a reference to the simplest lossless representation of this
geometry, e.g. if the geometry is a multipart geometry type with a
single member geometry, a reference to that part will be returned.
This method employs the following logic:
- For multipart geometries containing a single part only a direct reference to that part will be returned.
- For compound curve geometries containing a single curve only a direct reference to that curve will be returned.
This method returns a reference only, and does not involve any geometry
cloning.
.. note::
Ownership of the returned geometry is NOT transferred, and remains with the original
geometry object. Callers must take care to ensure that the original geometry object
exists for the lifespan of the returned object.
.. versionadded:: 3.20
%End
virtual bool isValid( QString &error /Out/, Qgis::GeometryValidityFlags flags = Qgis::GeometryValidityFlags() ) const = 0;
%Docstring
Checks validity of the geometry, and returns ``True`` if the geometry is
valid.
:param flags: indicates optional flags which control the type of
validity checking performed (corresponding to
:py:class:`Qgis`.GeometryValidityFlags).
:return: - ``True`` if geometry is valid
- error: the validity error message
.. versionadded:: 3.8
%End
virtual bool transform( QgsAbstractGeometryTransformer *transformer, QgsFeedback *feedback = 0 ) = 0;
%Docstring
Transforms the vertices from the geometry in place, using the specified
geometry ``transformer`` object.
Depending on the ``transformer`` used, this may result in an invalid
geometry.
The optional ``feedback`` argument can be used to cancel the
transformation before it completes. If this is done, the geometry will
be left in a semi-transformed state.
:return: ``True`` if the geometry was successfully transformed.
.. versionadded:: 3.18
%End
QgsGeometryPartIterator parts();
%Docstring
Returns Java-style iterator for traversal of parts of the geometry. This
iterator can safely be used to modify parts of the geometry.
Example
.. code-block:: python
# print the WKT representation of each part in a multi-point geometry
geometry = QgsMultiPoint.fromWkt( 'MultiPoint( 0 0, 1 1, 2 2)' )
for part in geometry.parts():
print(part.asWkt())
# single part geometries only have one part - this loop will iterate once only
geometry = QgsLineString.fromWkt( 'LineString( 0 0, 10 10 )' )
for part in geometry.parts():
print(part.asWkt())
# parts can be modified during the iteration
geometry = QgsMultiPoint.fromWkt( 'MultiPoint( 0 0, 1 1, 2 2)' )
for part in geometry.parts():
part.transform(ct)
# part iteration can also be combined with vertex iteration
geometry = QgsMultiPolygon.fromWkt( 'MultiPolygon((( 0 0, 0 10, 10 10, 10 0, 0 0 ),( 5 5, 5 6, 6 6, 6 5, 5 5)),((20 2, 22 2, 22 4, 20 4, 20 2)))' )
for part in geometry.parts():
for v in part.vertices():
print(v.x(), v.y())
.. seealso:: :py:func:`vertices`
.. versionadded:: 3.6
%End
QgsVertexIterator vertices() const;
%Docstring
Returns a read-only, Java-style iterator for traversal of vertices of
all the geometry, including all geometry parts and rings.
.. warning::
The iterator returns a copy of individual vertices, and accordingly geometries cannot be
modified using the iterator. See :py:func:`~QgsAbstractGeometry.transformVertices` for a safe method to modify vertices "in-place".
Example
.. code-block:: python
# print the x and y coordinate for each vertex in a LineString
geometry = QgsLineString.fromWkt( 'LineString( 0 0, 1 1, 2 2)' )
for v in geometry.vertices():
print(v.x(), v.y())
# vertex iteration includes all parts and rings
geometry = QgsMultiPolygon.fromWkt( 'MultiPolygon((( 0 0, 0 10, 10 10, 10 0, 0 0 ),( 5 5, 5 6, 6 6, 6 5, 5 5)),((20 2, 22 2, 22 4, 20 4, 20 2)))' )
for v in geometry.vertices():
print(v.x(), v.y())
.. seealso:: :py:func:`parts`
%End
virtual QgsAbstractGeometry *createEmptyWithSameType() const = 0 /Factory/;
%Docstring
Creates a new geometry with the same class and same WKB type as the
original and transfers ownership. To create it, the geometry is default
constructed and then the WKB is changed.
.. seealso:: :py:func:`clone`
%End
protected:
int sortIndex() const;
%Docstring
Returns the sort index for the geometry, used in the
:py:func:`~QgsAbstractGeometry.compareTo` method to compare geometries
of different types.
.. versionadded:: 3.20
%End
virtual int compareToSameClass( const QgsAbstractGeometry *other ) const = 0;
%Docstring
Compares to an ``other`` geometry of the same class, and returns a
integer for sorting of the two geometries.
.. note::
The actual logic for the sorting is an internal detail only and is subject to change
between QGIS versions. The result should only be used for direct comparison of geometries
and not stored for later use.
.. versionadded:: 3.20
%End
virtual bool hasChildGeometries() const;
%Docstring
Returns whether the geometry has any child geometries (``False`` for
point / curve, ``True`` otherwise)
.. note::
used for vertex_iterator implementation
%End
virtual int childCount() const;
%Docstring
Returns number of child geometries (for geometries with child
geometries) or child points (for geometries without child geometries -
i.e. curve / point)
.. note::
used for vertex_iterator implementation
%End
virtual QgsAbstractGeometry *childGeometry( int index ) const;
%Docstring
Returns pointer to child geometry (for geometries with child geometries
- i.e. geom. collection / polygon)
.. note::
used for vertex_iterator implementation
%End
virtual QgsPoint childPoint( int index ) const;
%Docstring
Returns point at index (for geometries without child geometries - i.e.
curve / point)
.. note::
used for vertex_iterator implementation
%End
protected:
void setZMTypeFromSubGeometry( const QgsAbstractGeometry *subggeom, Qgis::WkbType baseGeomType );
%Docstring
Updates the geometry type based on whether sub geometries contain z or m
values.
%End
virtual QgsRectangle calculateBoundingBox() const;
%Docstring
Default calculator for the minimal bounding box for the geometry.
Derived classes should override this method if a more efficient bounding
box calculation is available.
%End
virtual QgsBox3D calculateBoundingBox3D() const;
%Docstring
Calculates the minimal 3D bounding box for the geometry.
.. seealso:: :py:func:`calculateBoundingBox`
.. versionadded:: 3.34
%End
virtual void clearCache() const;
%Docstring
Clears any cached parameters associated with the geometry, e.g.,
bounding boxes
%End
};
class QgsVertexIterator
{
%Docstring(signature="appended")
Java-style iterator for traversal of vertices of a geometry
%End
%TypeHeaderCode
#include "qgsabstractgeometry.h"
%End
public:
QgsVertexIterator();
QgsVertexIterator( const QgsAbstractGeometry *geometry );
%Docstring
Constructs iterator for the given geometry
%End
bool hasNext() const;
%Docstring
Find out whether there are more vertices
%End
QgsPoint next();
%Docstring
Returns next vertex of the geometry (undefined behavior if
:py:func:`~QgsVertexIterator.hasNext` returns ``False`` before calling
:py:func:`~QgsVertexIterator.next`)
%End
QgsVertexIterator *__iter__();
%MethodCode
sipRes = sipCpp;
%End
SIP_PYOBJECT __next__() /TypeHint="QgsPoint"/;
%MethodCode
if ( sipCpp->hasNext() )
sipRes = sipConvertFromType( new QgsPoint( sipCpp->next() ), sipType_QgsPoint, Py_None );
else
PyErr_SetString( PyExc_StopIteration, "" );
%End
};
class QgsGeometryPartIterator
{
%Docstring(signature="appended")
Java-style iterator for traversal of parts of a geometry
.. versionadded:: 3.6
%End
%TypeHeaderCode
#include "qgsabstractgeometry.h"
%End
public:
QgsGeometryPartIterator();
QgsGeometryPartIterator( QgsAbstractGeometry *geometry );
%Docstring
Constructs iterator for the given geometry
%End
bool hasNext() const /HoldGIL/;
%Docstring
Find out whether there are more parts
%End
QgsAbstractGeometry *next();
%Docstring
Returns next part of the geometry (undefined behavior if
:py:func:`~QgsGeometryPartIterator.hasNext` returns ``False`` before
calling :py:func:`~QgsGeometryPartIterator.next`)
%End
QgsGeometryPartIterator *__iter__();
%MethodCode
sipRes = sipCpp;
%End
SIP_PYOBJECT __next__() /TypeHint="QgsAbstractGeometry"/;
%MethodCode
if ( sipCpp->hasNext() )
sipRes = sipConvertFromType( sipCpp->next(), sipType_QgsAbstractGeometry, NULL );
else
PyErr_SetString( PyExc_StopIteration, "" );
%End
};
class QgsGeometryConstPartIterator
{
%Docstring(signature="appended")
Java-style iterator for const traversal of parts of a geometry
.. versionadded:: 3.6
%End
%TypeHeaderCode
#include "qgsabstractgeometry.h"
%End
public:
QgsGeometryConstPartIterator();
QgsGeometryConstPartIterator( const QgsAbstractGeometry *geometry );
%Docstring
Constructs iterator for the given geometry
%End
bool hasNext() const /HoldGIL/;
%Docstring
Find out whether there are more parts
%End
const QgsAbstractGeometry *next();
%Docstring
Returns next part of the geometry (undefined behavior if
:py:func:`~QgsGeometryConstPartIterator.hasNext` returns ``False``
before calling :py:func:`~QgsGeometryConstPartIterator.next`)
%End
QgsGeometryConstPartIterator *__iter__();
%MethodCode
sipRes = sipCpp;
%End
SIP_PYOBJECT __next__() /TypeHint="QgsAbstractGeometry"/;
%MethodCode
if ( sipCpp->hasNext() )
sipRes = sipConvertFromType( const_cast< QgsAbstractGeometry * >( sipCpp->next() ), sipType_QgsAbstractGeometry, NULL );
else
PyErr_SetString( PyExc_StopIteration, "" );
%End
};
QFlags<QgsAbstractGeometry::WkbFlag> operator|(QgsAbstractGeometry::WkbFlag f1, QFlags<QgsAbstractGeometry::WkbFlag> f2);
/************************************************************************
* This file has been generated automatically from *
* *
* src/core/geometry/qgsabstractgeometry.h *
* *
* Do not edit manually ! Edit header and run scripts/sipify.py again *
************************************************************************/
|